United States Patent

US009063673B2

(12) 10) Patent No.: US 9,063,673 B2
Weigert et al. (45) Date of Patent: Jun. 23, 2015
(54) SYSTEM AND METHOD FOR 6,467,085 B2* 10/2002 Larsson ................ 717/165
IMPLEMENTING APPLICATION CODE 7,017,146 B2* 3/2006 Dellarocas et al. . ... 717/106
7,024,660 B2* 4/2006 Andradeetal. ... .o 7177124
FROM APPLICATION REQUIREMENTS 2002/0040470 Al* 4/2002 Guthrieetal. ..... . 7177126
. 2003/0192032 Al* 10/2003 Andradeetal. ... .o 7177124
(75) Inventors: Thomas Weigert, Lake Barrington, IL 2004/0015833 AL*  1/2004 Dellarocas et al .. 717/106
(US); Francis Joseph Weil, Arlington 2006/0150160 A1*  7/2006 Taftetal. .. . 717/126
Heights, IL (US) 2008/0244506 Al* 10/2008 Killian ctal. ... .. 717/100
’ 2009/0132995 Al*  5/2009 Iborraetal. ... ... 717/106
. . . . 2010/0262558 Al* 10/2010 Edwards et al. .... ... 705/348
(73)  Assignee: UniqueSoft, LLC, Palatine, IL. (US) 2011/0041013 Al* 2/2011 Ingimundarson ............ 714/40
) ) o ) 2011/0099357 AL*  4/2011 Loen ..o....coo.... .. 712/225
(*) Notice: Subject to any disclaimer, the term of this 2012/0216012 Al1* 82012 Vorbachetal. ................. 712/11
patent is extended or adjusted under 35 2012/0303924 Al* 112012 ROSS ..coooovovvonrininiiniinn, 711/170
U.S.C. 154(b) by 816 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/222,962 A. Letichevsky, et al.; “Basic Protocols, Message Sequence Charts,
and the Verification of Requirements Specifications;” Jun. 2, 2005;
(22) Filed: Aug. 31, 2011 pp. 1-16.
(65) Prior Publication Data * cited by examiner
US 2013/0055194 A1 Feb. 28,2013 Primary Examiner — Chameli Das
L. (74) Attorney, Agent, or Firm — Garlick & Markison;
Related U.S. Application Data Timothy W. Markison
(63) Continuation-in-part of application No. 13/221,595,
filed on Aug. 30, 2011. (57) ABSTRACT
A method for execution by a processing module begins with
(51) Int.CL receiving application requirements and parameters. The
GO6F 9/44 (2006.01) method continues by generating application code based on
GO6F 1136 (2006.01) the application requirements, the parameters, and the feed-
52) U.S.CL back. For a current implementation of the application code,
(52) p pp
CPC GO6F 8/10 (2013.01); GO6F 8/355 (2013.01); the method continues by entering a loop that begins by select-
GOG6F 11/3672 (2013.01) ing an implementation tool in accordance with implementa-
(58) Field of Classification Search tion constraints and a previous implementation result. The
None loop continues by generating a current implementation result
See application file for complete search history based on an application of the implementation tool, one or
’ more of the application requirements, one or more of the
(56) References Cited parameters, and the previous implementation. The loop con-

U.S. PATENT DOCUMENTS

5,481,741 A * 1/1996 McKaskleetal. .......... 345/522
5,487,172 A * 1/1996 Hyatt ................. .. 712/32
5,734,863 A * 3/1998 Kodoskyetal. ... ... 703/27
5,991,823 A * 11/1999 Cavanaughetal. ... 719/330
6,275,976 B1* 82001 Scandura 717/120
6,292,830 B1* 9/2001 Tayloretal. ............ 709/224

tinues by receiving current feedback regarding the current
implementation result. The loop continues by determining
whether the current implementation result is at a desired level
of correctness based on the current feedback. When the cur-
rent implementation result is not at the desired level of cor-
rectness, the loop repeats otherwise it is exited.

17 Claims, 43 Drawing Sheets

80

generate application
requirements from inputted
requirements

v ®

generate application code
based on application
requirements, parameters, and
feedback

v__

test the application code based
on application requirements
and parameters to produce the
feeddback




US 9,063,673 B2

Sheet 1 of 43

Jun. 23,2015

U.S. Patent

9z 9poo
uoneoidde

g7 jun Bugssy

C€ Yoeqpas)

A

«<

1 jun uogeuswadun

Z¢ 10o0j04d
UOIROIUNLILIOD
wielshs

<€

$¢ siojewieled

0Z Sjuswalinbal
uoneoydde

Zlun
sjuswiaiinbas

_ 31 Sjuswiaiinbai
| papndu

|

<t} §7 Siolowieied




US 9,063,673 B2

Sheet 2 0of 43

Jun. 23, 2015

U.S. Patent

¢ 9ld
¢ siandwion OF weisfs
BJOLL 40 BUO
&t sionduwioo
5T wun 20U JO BUO
uoneuswa|duw
gf yun
A Bunse;
07 sjuswesnbai A
Juswialels wesboxd uonesijdde
— 9z 9poo
uswees wesbord 14 mMmHoEEmQ 5% yoeqpeey | | | uoneaydde
uswialeys we.boid ¢ Moeqpes)
uswales weiboid 57 swawainbas
> uoneoydde
Gz 8poo uonesydde > el
A 72 |0a0jold
UOHBDIUNLLIWOD
wajshs SJUBLINIOP [090)04d -
e — sjuswnoop wiopeld -
uofsues) % vmw w% MMQMMQ UOIIULEP JOIARYG -
a1e)s wayshs uoneoydde SOLBUBDS -
_ BUSIO SS8UJORLIO0D -
- ¢l jun - S9SED 8sN JUBUOAWOS -
° 8je)s wayshs uoneoydde 1 swewssnbar | sjuswialinbai
% [BUOROLIN}-UOL -
97 sjuswannbai indu
07 uswiainbas uopeaydde




US 9,063,673 B2

Sheet 3 of 43

Jun. 23, 2015

U.S. Patent

9z opoo
uoneidde

O} uun Buyssy

¥z sisppwesed

— f
1 Epainpow
— y uonenobau !
CEREITA | 1 poojoud |
o et
A
Y
" &% 9inpouw “ & ainpouw "
1 uonenobau 1 Uuoneiobau !
b jooojoud > jooojoud "
h {07 siuswaiinbal 21 wun
&1 nun uonejuaisidun uoneoydde Sjuswalinbal

J
_
_
_
_
|
_
_
_
_
_
|
_
|
_
_
|

PN
_

| sjuswaiinbal
panndui

AI“| 7z sisjeuieled
|



US 9,063,673 B2

Sheet 4 of 43

Jun. 23, 2015

U.S. Patent

g¢ 9po9
uogeoydde

-

) yun
sjuswisinbal

| 8] sjuowainbai
_

pepndui

AI“| ¥z sisppwiesed
_

1/ABIE

G olwesfs o
“ g} hun Bujss)
_
| o T i
| ! Tpainpow |
_ >i UOISIoAUCD !

_ “ jooojoud
“ ZEeqpasy | —---—-- -
_
_ A
|
_
|
|
_ FTo T ;
_ | THanpow

| UOISIOAUOD <€

| U ooojoud (02 sjuswannbal
_ b e a uonesydde
! T 1un uonejuswejduw
|
L

¥z siojpwesed



US 9,063,673 B2

Sheet 5 of 43

Jun. 23, 2015

U.S. Patent

RD]E
G quwasts R
_ g} yun Bunsel _
_ _
_ _
| > |
_
_ 7€ ¥0RqPas) _
“ _
_
_ A _
_ |
| _
;e _
[ CT o T T A I 7% snpotu “ _
— [P anpow | | ! —
9z 8pod _ ! < 1 UOIsIsAu0D | 31, siustwsiinbay
< { UOISISAU0D | | p | !
uoyeoydde | ' ooopid | 0Z siuaweinbay | looooud _ payndut
_ L ___ o uoneoydde - ..Nlm“msn - _ .
“ #1 vun uonejuswedun SjustaLnbhal € _ 7z siouesed
_
L »r ||||||||||||||||| .
72 sioyeuiered



US 9,063,673 B2

Sheet 6 of 43

Jun. 23, 2015

U.S. Patent

9°'0ld

A

¥oeqpos)

91 Jiun buyse)

3oegpas;

apoo uonedydde —

Buidojeasp

« [ jun uogeaws|dul e

T2 anpow

{7 sjuswainbai uoneoydde j

L# UoRIsUBl] 81E}S
74 wajsAs uoneatdde

wiejsAs uogeoydde

U# UOIISURI] 91BIS
waysAs uonesydde

UOISIOAUO0D
syuswainbal

£7 ainpow
UOHEOILIOA

I\
>

GZ a|npow

sishjeue

7 siojpuwered

g1 sjuswainbal

payindut

500}
ORISR 9)E)s

§100)
Buyooud wesosyy

SO0} LORONPAY 918)S

§/00}
Bunjosyd jopou

51007 uonelojdxe
aoeds ajels

$|00} UONBOHLISA



US 9,063,673 B2

Sheet 7 of 43

Jun. 23, 2015

U.S. Patent

g7 opoo uoyeoydde

A

Buidojpnsp

<—

L9l
> 0BgPes,
g un bugsay |
¢t %oBegpes,
¢E Hoeqpes) yy
IZ 13
77 (8)8|npow uonewLIojsuR) o s
. {7 suewannbai
uoijeoydde

sa|diound
Bunaveiboid
Aseuonnions

we)shs
UONBYNSUOD

wypobe
peuiweiepeld

wialshs Buiuueld
paseq v

5100} uoyeusWwaldul

< §7 Siolslieied

31 sjuswaiinbal
pepndul



US 9,063,673 B2

Sheet 8 of 43

Jun. 23, 2015

U.S. Patent

02 apoo uogeoydde
Buidojenep

¢ anpou
uosuedwod

I€ anpous
UORNISXa }$8}

¢ 9|npow
uonessusb
8SBD 189}

¥} Jun
uogejuawaidu

Y

T

.

4
Hun syuswasnbay

<—

0z sjsweinbai
uonesiidde

<«— {7 Sieppwesed

g} syuswainbai
payndut



US 9,063,673 B2

Sheet 9 of 43

Jun. 23, 2015

U.S. Patent

0l 'Ol

H0eqpPpes)
ay} sonpoid 0y sisiswesed pue
sjustiaiinbal uonedydde uo
paseq apoo uonesjdde ay) 188}

=1

yoeqpes;
pue ‘siejaweled ‘sjuswainbal
uoneoydde uo paseq
apoo uoneoijdde sjelsusb

"

sjuswialinbal
papndul wodj sjuswainbai
uonedydde ajesoushb

08

6 'Old

0/ fnus Bupnduioo

g/ fiowaw

1 ainpow
Buisseoo.d

¢L ainpowi O/

gg 8poo
uoneoydde




US 9,063,673 B2

Sheet 10 of 43

Jun. 23, 2015

U.S. Patent

¢l Old
Bupedwoo
uo paseq Yorqpas) ojeloual
an A

asuodsal passap 0} asuodsas apo2
uoijealjdde Buidojsnap aseduwiod

PEv A

uoneuswa|dul
UaLIND alenwis

AN A

(s)aseo 158}
10BASqE Ojut (S}BSED 158] WaAU0D

i A

uolejuawa|dwi
B0 J0} (8)ases 158 8jrIsuab

8ot

8poo uopesydde
Ujim auop

uahejuswa|dul
1xau o) ob

uoeIuaw|dun
JWBLINT UM 8UOp

ZoF

9ot

apos uopedydde
J0 uoneuswadus Jwaund

1O NS34 SleIpauLRwl Btelsual

0oL A
185 |00} uoneusLB|d
papsjes Adde
86 A

(s)jo0) uoneyuawa dwit 198198 _An

96

8

b "OId

¥0BqP89; LoTedHLIBA 80npoid
0} SP|OYSBIL} UOHEOULISA UlM
S)NS8. LORBSILIGA 8JedWod

76 A

BHLIBILO $$8UIDSL0D puB
$9)B]S WIJSAS PIEA UYIM JUDISISUOD
st Buiesausb ey} jeuy Ajusa

) A

YOEQPSS) UOHEDIIIBA PUB
sjuswannbel papndul uo paseq
siususainbal uoyedydde sjeiausb

06




US 9,063,673 B2

Sheet 11 of 43

Jun. 23, 2015

U.S. Patent

ou

$40}08} JUsLUdojeASD
apo2 uopeaydde
JuBLND palyipow sanposd

9tl

a|qeloaey buisey

vel %

(s)}oseD 159) Jod
}insa1 S1RIPSULIBIUL }$8]

& A

_ (s)aseo 156} ajesouab _

A

1iNs1 BlBIPaULLISUI

1uadino e a)esouslb

Ty

dooj sepue

apod uoyedydde
Jo uogejuawe|dwi ajesouab

uonelustue|duw
1xau 0} ob

act

A4 A

suonisues aje)s
wayshs uoyeoydde ayeisusb
0

..
<




US 9,063,673 B2

Sheet 12 0f 43

Jun. 23, 2015

U.S. Patent

\4

ou

sJojoey juswdoleasp
8po9 uoesydde gH
JUBLING paljipots sonpoid

9tl

Y

ou

(s)osea 159} Jad
Jinsay ajeipauLIa)u; 1S9)

& A

s40}08) Justudoeasp
apoo uoneaydde gy
JUBLIND palipow sanpoud

_ (s)asEd Jsal (1H djeiousb

"
>

oer A

NS84 SjeIpawLIUY
Q7 ue sjeseuab

74

dooj Jswa

9t}

(s)oseo 159} Jod
JINsau ajeipauLIB)Ul JS8)

A

_ {s)osen Js8} 1Y Sjetouab

)

J|nsai sjeipatLBul

1Qy ue djeseush
gz

dooj Jajue




US 9,063,673 B2

Sheet 13 0f 43

Jun. 23, 2015

U.S. Patent

Y

ou

sJojoey Juawdojeasp apoo
uopeoydde |aAs| apod
BLINY palipow sonpoid

ge}

_ dooj 1ixs _

ajqesone) Buiisa)

Vel

Y

ou

(s)oseo 159} Jod
}NS8. SjeIpoLLIBIL] 188}

& A

810108} uswidopensp
apoo uopesydde g7
Jualing paiipous asnpoud

_ (s)asen 159} |oA8| Bp02 BjeiBUsh

e A

>

JiNsa. SjeIpauLIBIU
|9A8| 8p09 B B)eloush

gcl

doo| Jajue

a¢l

a|qeione; buiissl

vel

(s)oseo js9) Jod
JINSaJ sjeipauLIsul 188}

e A

(s)ased )59} 07 Slesouab

e A
JInsaJ SlEIpawIBIUl
a7 ue sjeisush

82y

dooj Jsjue




US 9,063,673 B2

Sheet 14 of 43

Jun. 23, 2015

U.S. Patent

6} "9ld

sjoejle Juswsinbai Indut Juswinaop
wiopeld pue ‘sjoejnie Juswainbal indus
UOHIUYSP JONBYS] ‘Sloejipe Juswanbal 8y} jo
3UO0S pue ‘'SJOBYLE TH B4} JO BL0S ‘SpoBjpE
{771 84} SLOS U0 Paseq SIoBjHE 8pod ajeiauab

i A

S1oejile JUsWBINbaI
Jndus Juswinoop uliofjerd pue ‘sjoeje
juswainbas ynduy uoniulep JonBYaq ‘SsioejiLe
QTH 98Ul BWOS ‘S)oBpe [9AS] aINjIB)LOIE
9} 4O SWOS Lo paseq sjoejiue 077 dlelouab

iz A

sjuswaiinbad Indus Juswinoop |0aojold
pue ‘sjuswaunbai indu; [euolouUn)-uou ‘Sjaeje
justwslnbal aWIOS ‘SIOBJILE [9A9] 8iM0BJILDIE
3OS UO Paseq sjoeye (T4 Slessush

7T A
JOBJILR 9SED asn jusuodwiod
pue spoeue sjuswainbal
BUI0S 1SB9| JB U0 PIsEq
SIOB}IUE [9A8] BINjoslyDLe Bjesauab

2 A

sjoejue Juswainbal
ndur uo paseq syoeje
siusweanbal slelaub

doo| sajus

ovi




US 9,063,673 B2

Sheet 15 of 43

Jun. 23, 2015

U.S. Patent

¥oeqpas;) UoediaA
aonpoud 0} spjoyseiu}

UONBOILBA U}iM S|Nsai
uoneoyueA ajedwod

1

BLISILIO SSOUJ084I00
pue sajels Washs
DIfEA UM JUBISISUOCD St
Bunelouab sy} 1et Ao

80¢

(shuswainbai 1se|

¥0C

¥OB(PS8) LOIBOIIBA
pue ‘sieaweled ‘sjuswaiinbal
panndui uo paseq
sjustasnbal uoyeoydde
2J0W JO auo ajeiouab

(shuswasinbai
Xau o} ob

1

siglewieied
pue siuswslnbal papndu sa808)

00¢

Les

30¢

Ziun
sjuswasnbal

¥61 Aowsw

Buissanoid

061 sinpow Of]

_
_

_

_

_

_

_

I

| b} s|npotu
_

_

_

_

_

_

L

07 siuswwaiinbal 77 siopweled

uonesydde 9 81 sjuswaiinbey
peyndul



US 9,063,673 B2

Sheet 16 of 43

Jun. 23, 2015

U.S. Patent

(s)uonipuoa-jsod
{s)uonoe
(s)uonipuoo-aud

(1SSV) uoyisues

aje)s wajshs uoijeoydde

1SSV

A115sV [eee | STy 188V
14 11ssv] eee | sy | issv]issv
L4 [ 4 L 4 ® ®
® [ J [ d [ ] | J
[ J . [ ] ® L J
1SSV | @ee | 1SSV | 1SSV | 1SSV
1SSV | @ee | iSSY | 1SSV | 1SSV
1SSY | @@ e | 1SSV | 1SSV | 1SSV
1SSV |ee® | 1SSV | 1SSV | 1SSV
199V [eee | 155y | 1SV | 1SSV
1SSY | @@ e | 153V | 1SSV | 1SSV
LSSV [ eee | 133V | 1SSV | LSSV
1SSV | @ee | 1SSV | ISSY | 1SSV
74
4
7
7
/

0z sjuswsinba
uogeoidde

[ 71 Jun sjuswianbsl

_ 12 sinpow
UOISIBAUOD

sjuswiainbal

$

GZ 9jnpow
sisfjeue

AV

€2 amnpoul
LONBOYLIBA

(OSIN) sueyo

gousnbas abessew

sejge)

suofpuc) eABoj

8k

sjuawainbal payndul

$j00}

UonoBNSAR BlBIS

500}

Buyooud waioay)

$/00} LoRONpas alels

500}
Bupjosyo [spoiu

$j00} LonEIojdXS
aoeds aels

$|00} UORBOIIBA




US 9,063,673 B2

Sheet 17 of 43

Jun. 23, 2015

U.S. Patent

(S)pjoysaiy) uoKROYLIOA
UM Jnsai | QY s4eduiod

=1

1SSy 8yl
uo {s)jo0} uonesiea Aidde

44 A

(8)j00} uoHEILIBA 108]8S

e

ssaus)ejdwod

1O [oA8] palisep 18
1SSV

{44 )y

%0B(qpos) UOHEOILIBA SAIS08)
777 A

1SSV palesauah Aisnoinaid e
pue ‘sisjewesed ‘sjuswasnbal

1SSy 840U J0 suo dsjeisusb

= 1

dooj e Jsjus

Y0BQPa8} LOIBILLIBA U0
paseq Bunessusb ajepdn

payndul uo paseq €]

9z¢




US 9,063,673 B2

Sheet 18 0f 43

Jun. 23, 2015

U.S. Patent

$S8UIDBII00
10 |oA8] polisop 18
ynseu

30BGPaS} JUSLING BAIBDB)

¥OBQPa3} JUSLND U0
paseq Buiesousb ayepdn

A3

A

Jinsas uongyuswa|dill

Juaino sjelaush

[
[sp

0

A

(s)j001 uonEIUBLIBIDWI 10885 _A‘

14

Q0O

dooy Jojus

gec

uoneuaus|duil
xau o} ob

il

962

Yoeqpes; pue ‘siejewesed

uo paseq spod uoneoydde
J0 uoyejusws|dul ue ajelsuab

Z6¢ A

}oBQpa8) pue ‘sis)ewered
‘siuswannbay uoyesydde aaigos)

06
(e )

‘siuswisanbai payndu -

71 uun uonewswsduw

yaz Aowsw

A

_

_

_

_

_

_

_ Y
_ 297 einpow
_

_

_

_

_

_

l

A
Y

082 ainpouwl O/

|
|
_
_
_
_
|
Buissaso:d |
|
|
_
_
_
_

a—— —— v — v o— o]

d¢ epoa
uoneaydde

7z siotowesed
% 07 Sjuawainbal
uoneoydde



US 9,063,673 B2

Sheet 19 of 43

Jun. 23, 2015

U.S. Patent

7] hun uonejuawsidul

787 Alowal |« 755 %0BqpPO") 8P |
]
“ v !
! 7% eseyd o
— ustudojsasp apod |~ I
“ $ZC SioejiLe apoo ! 19A8D 8P |
|
“ o
} |
1 . 1
' 0E¢ soeqpesy g1 !
} |
|
“ ¥ |
} —— |
e piSeseydam |
P ZZE speyie 477 ] |
\ I
| 4 |
} |
“ 826 Yoeapesy ATH |
" ¥ m
}
— cigeseudaH el
! 028 siee aH |
} A |
} |
|
“ 975 yorapas] aundsiyale 1
Y ¥V ¥ " v | _
~FrS { J—
0-08¢ sinpow ) 01€ eseud I ___
< -08Z ainpou jndul
indino " 37T SIBJI BINDBYLDIE uoleala ainoaliyole " ﬁ
} — ! 77 slepwesed
S @onpoudusos 1\ 5 swouinbe
uoyeoydde

9Z 9Ol



US 9,063,673 B2

Sheet 20 of 43

Jun. 23, 2015

U.S. Patent

Bunedwoo uo
paseq %oeqpes; ajeieusb

gIt A

JOIARYSY PaqUOSaId UM
JOIABYS] PaAISSGO asediwiod

T3

{s)eses
1581 Jad ynsas uonejuswaldu
JUBLINg alBINNS

™1

(s)oseo js0) ajesouab

0L€

Xau 0y of

uoljeuswadul

-

89¢

Sjuswiaiinbal
uonesydde uo paseq (shnsa
uoflejusiaidwi JusLINd 158}

#9€ A

8p0o2 uonesydde
4O suojjejusLus|du 9A103)

Z9¢ A

syuawalinbas uoiesidde aniaoel

0

€

b grunbugse; |

$oe Aowsul

ZGC ainpow
Buissacoud

0GE ainpow Q|

[P U UL VUL UL UL UL PUUUUS UUNUNS VU VU SO UL U U,

Z¢ Noeqpasy

#¢ siejoweled

A
>

——

§¢ opoo
uopedidde

{0Z swswaiinbal
uoneoydde



US 9,063,673 B2

Sheet 21 0f 43

Jun. 23, 2015

U.S. Patent

¢€ Old

Butredwiod uo paseq

L€ Old

0¢ "ol

6¢ 9ld

Buuedwiod uo paseq

Buneduios uo paseq

Buedwiod uo paseq

¥0BQP93} 9p0J ajeiaush ¥oegpes) 017 ojeleush ¥oeqpes) QH slesoush ¥OBRQPa3} QY djesoush
9LE % 9/¢ 0L¢E 9/¢
Joineysq Joineysq Joineysg Joineysq
8p0od paquosald yim Joieyaq Q77 pequosald ypm Joineysq J7H paquosa.d yum Joineyaq QY paquosad ypm Joiaeysq
2p09 PAISSA0 slediuod Q77 PRAIDSUO0 8Jediuod Q7H paAissgo siedwicd QY PeAISSqO siedwiod
Vi€ 753 Vi€ Vi
(s)aseo 1se} (s)ases is9} (s)osen )50y (s)esen 1s9)

2p09 Jod Ynsai uonejudws|dul
3p0J JUBLIND B}BININS

@71 Jod ynse: uoneuswsidwl
a7 JuBLIND SjenIlS

(7H 4ad ynsas uonejuswa|dw
QTH W80 BjR|nUNS

7Qy Jed jnss) uojejusws|dwl
1AV W8N SjENWAS

aL

L

o
[ap]

L

!

¢LE

(s)osen 158} apo9 slessusb

(s)ased 158} (077 siessusb

(s)ased 188} QH ojesaush

(s)asen js81 QY dleisusb

0.8

3

[l
~
o

0L




US 9,063,673 B2

Sheet 22 of 43

Jun. 23, 2015

U.S. Patent

JusLLINoop

j020101d

JuBLLND0P
uloped

SOURUBDS

‘e

esn

8poo 188) wuojed
158} j0c0j0id
apod
X jocojoid sosds
. 1000304d
I |spow
" wioped wuopeid
[}
| 4] apoo japow Ise} Aljues
"
| il apoossn
1
I
1
1
1
1
1
1
1
1
"
1
! |opow
! Jomeyq 5Js9} jopol
|
" [8pou eje)s [apow sjejs
I
" [opow [opow |opow
" aunjons amonys aimonis
" _
" lepow ‘yose :
1 )
' ! UOHERD
180 washs Emcwww_mﬁc ) ubisep teasi woj } uBisep eASIUBIY | aumepyoe

sishieue
sjuswasnbas

385U)09110

59882 38N
Juouodwion

s'bal
[BUOljOUNY
-Lou

uoljeyol
Siuswialnbal




US 9,063,673 B2

Sheet 23 0of 43

Jun. 23, 2015

U.S. Patent

18] wiojerd
159 [020j04d

Juswindop

jooojoud

! 8pod “
-—-=- ooojoud soads | ." : :
[ooojo.d JUBWNO0p
9po2 lopow [ i wiogerd

wioyerd wJopeld

1 L 1591 Ajlues

uonuYEp

5po2 [opow Joneyeq

8p0o2 Jash

SOlIeusds ‘bai Jasn

BLIBILID
$S9UJ09.102

s, baJ
pazijewLo)

apooJesn fp - - L ____

S8se0 8sn
Jusuodwoo

$158] [8pow s;bal
oneysq [ - 159 [P pajLIaA /bal
[euonouny
-uou

[spow ajgls [ 2] jepow gigys kS - - -

[epow
ainjongs

alnonis ainjonis

[epow "yaie

Juswidojsasp “ ubisap [oAs| MO| “ ubisap (9] yblY “ uofjeass ! sisAjeue ! uoneydIe

1
8p0o ! i 1 aInoajyole 1 Sjuswalinbal 1 Sluswannbal

189y Wyshs



US 9,063,673 B2

Sheet 24 of 43

Jun. 23, 2015

U.S. Patent

9pod
alepi|ea

1887 wioped

159] [020104d

JusInoop "
= : [osojoid " |||||| !
|os0joud s0ads "
[020}04d Juswnaop 1
8poo [opow wioyeld B
wJoped wJoperd

uopuyep
loineyeq

. 158} Alues

8poo [apow

P02 Jasn

‘baiJasn

soleuads

—_—mm g ===

BLBJLD
SSBUDALI0D

s, bai
||||||||||| | psziewioy
opoosesn - --L - i .

s9562 SN
wsuodwoo

s, bai
paliLBA

oneysq fa--T- - - - Siss} |spow s-bal
[euoiouny

-uou

o412
|
I
1

[spow slejs lspow sjers [ - - - -

|apoLu
aInjonas

[apouu
anpns

[apow
aInjonis

|epow "youe

uonealn SISA[eue
aInoayyole sjuswalnbal

uoneNold

159] WaJSAS sjuswalinbal

e e e e m e === = = = —

JusidopAdp 1 uBisap [3A9] MO| 1 uBisap [ora| ybiy "
OUOO 1 1 ' " 1



US 9,063,673 B2

Sheet 25 of 43

Jun. 23, 2015

U.S. Patent

159} wioyed

18] Wa)sAsS

159] |020]04d

8poo

soads

|osojoud

8poo

[apow

e o

wioped

wioperd

|oa00.d

18] Ajlues

9p02 [9poW

2P0 Jasn

2p0o3 Jesn

Juswidojanap
apo2

[epow
loineysq

s}se} [epow

s,bai
pazijew.o}

1
I
1
h 4
s bal

|epowl sjels

ainjoniis

[epow

paljueA

ainonis ainjoniis

ubisap |aAs] MO

[spolu "yoe

uonealn !

1 ubisap [BAS UBIY 1 gumoayypue '

sisfjeue
sjuswaiinbal

juawnoop
|oooj0.d

juswnoop
wioyerd

uonulap
l0lAeYeq

Solleuads

"bal Jasn

eLsilo
$S8U}081100

$9580 98N
Jusuodwod

s, bal
[euoouny
-uou

uoneydie
sjuawalinbal




US 9,063,673 B2

Sheet 26 of 43

Jun. 23, 2015

U.S. Patent

] 158} Wioyed

1
-———

1591 [0o0j01d

uswInoop
|ooojoud

8poo
|ooojoud

soads
|ooo10.d

Juswnoop
wJoyed

8poo
wioped

uopiuep
Joineysq

apo2 |apow 189} Allues

2po3 Jasn

‘bai Jasn

SOleURdS

BLBYLIO
S$56U}08LI00

s bai
|||||| pazijew.o}
opooJesn & - - -+ —-——-— - 1 saseoasn

||||||||||| jusuoduwiod

$]$9} |]opowl s bai
[euonoun,

-uou

e mmmdmm——d a1

[opow
ainjonis

[epow
ainponis

aimonas

[spow “yole

uoneasn
anpa)yoe

sisheue
sjuawalnbal

uolieyolle

HCOEQO_®>®U 1 C@_WGU |BA3] MO| 1 C@_wwv [873) r_@__(_ WH—CGEQ‘::UQ‘_

158] WS)SAS 8p0o ' 1



US 9,063,673 B2

Sheet 27 of 43

Jun. 23, 2015

U.S. Patent

8pod
ajepiea

159} Wwioped

18] |020j0.d

159) Wo)sAs

e e e e o e e e e e e e e e e e e e mm e e e e e e e e e e e e e e e = = = o o e e =

8poo

joaojoud

3poo
wioge

[epow

soads
|oaojoud

1d wJoyeld

8p00 [epoll

2p0J Jasn

2p0J Jesn

Juswdojaasp

8pod

188 Ajlues

juswnaop
[oooj0id

. E.mssoov
wioped

s1s8] |apow

bai
pazijew.o}

[spow gjejs

[epow
aInpons

[epouw ajejs

[epow
8inons

[opow

ainjonlis

1 UBISap [oA8] MO|
1 1

lspouw "youe

' uopean
U | aimospyome

sIsAjeue
sjuswaunbal

uopjuyap
loineysaq

SOLIEURdS

‘baJ Jasn

BUaIo
$S8UI081I00

$8SBJ 38N
Jusuodwos

s bal
|euonouny
-uou

uopejdl|d
sjustuaanbal




US 9,063,673 B2

Sheet 28 0f 43

Jun. 23, 2015

U.S. Patent

apoo
s1epljeA

159) wioyeld

159) WioIshs

8p0od
[02010.d

159} |020104d

soads

|020}04d

apoo
wioged

[epoLu
wJogeld

8pod [apol

°9P0J Jssn

159] Ajlues

- — -

Jualunoop
[0o0304d

JusNo0p
wJoyerd

uopuyep
loineysq

wawdojarsp
apod

1
1 ubiSop [oA3] MO I
|

[epow
oineysq

[epow gjes

[opow alels

Soleusss

‘bal asn

s, 'bal

BLBJLIO
$59UJ091109

pazi[ewio)

sose0 asn
Jusuodwoo

sjse} [spow

P ) o S e L

s, 'bal

paljlieA

[epow
ainpnis

aInonjs

[epow
aInjonis

[spow "yoJe

uonesso
ainjaa)yole

s,bal
[uoioUNy
-uou

sisAjeue
Sjuswannbal

uopeldIe
sjuswalnbal




US 9,063,673 B2

Sheet 29 of 43

Jun. 23, 2015

U.S. Patent

A ADIE 0 'Ol

paiysey M3 paJysey M3 (Wvy - Wd L b) R o oo —— .

moljeh ysey :g-N mojjeA ysey :g-N Wb Ty N
Apoud jenba Awoud jenba (N1l ~ WNd9) i [
‘B)BUILIOP § — N ‘9)BUIWOP S - N Buiueas | & | ®
| ® | | e |
! ! | |
“ Aysoud jenbe fuoud N 01 S (INd9 - Wde) [ ® [ ®
‘Bleuop § - N ysni Bueas | | | |
! | | i
Auoud fenbs Ayioud jenbe {(INdE ~ NY8) “\ \m —— e & & — _V \__
‘BIRUILOP S ~ N ‘Dleuilop S - N Aep-piw _ | | |
_ ! | m
Aoud jenbs (NV6 ~ Wv9) ( | sessessoy) | |
‘sjeutwop S - N foud s 1N ysni Buniow |  wdnpingowesn | I
| * Inoy ysni aziwius | _
pos ysey -3 faoud jenbo (W9 - Wyp) L eee
MO||8A USel; :S-N ‘9jeunucp § - N Buiwiow Apes \ H o
i 1L

pUSYoam Aepyaam Aep jo awi (| |

v \
9jge] |ruUOiRIRdD & &

——— e & & — — -
13 Gl N 1S uie

1S ul

1S il



US 9,063,673 B2

Sheet 30 of 43

Jun. 23, 2015

U.S. Patent

Wb dos
yoea uo obo7 Ain

1001d Jayjeam
[041LIOT PAZIRAUSD
dryoeq Atsyeq

sjusiualinbas tsylo

£r old
pas usaif _l 1Sl
Wy, TF o9 . 7T
pai usalb
e vi A ..... o9 .. vi
pai usaub
] ]
. ®
. ™
i ¥ - vi =
pal usasb _I 18 U
AIOIAN G S

ADIE]
pal UsaI6 [ s
. )
e ™
. .
pal usasb [ 15t
pal ueaib _l 1S 0l
pal useib _|| 18 )
Ajuoud fenba
BEUWop § - N
[AADIE
pal ussib _I 1S yu
T « R vi e
, ® °
® °
° °
pal usalb _.I 18 €
dHp Vi D 99 S P
pai uestb
W v <o S
pai usalb
AIoId S OTN



U.S. Patent Jun. 23,2015 Sheet 31 of 43 US 9,063,673 B2

gt
gt |

controller 1
— i

controller 1
i

intersection
intersection

>
Y
6

&
£3 =
® g = [ ] d
[ ] 35 [ ] b
> O [TH

gt
gt |

controller ‘L
— i

f ool =

i=} 2 &
2 23
Q OE
2 r 4]
5 55
E E®

~




US 9,063,673 B2

Sheet 32 0f 43

Jun. 23, 2015

U.S. Patent

8% "Old

ysey pas -3 ¢ uselj mojjeh S-N 13S713
Auoud [enbs ‘sjeuiwiop S-N :NIHL
Wdil > 8wl => V9 4l 3S73

Uselj pas M-3 8 usey mojish S-N 13873

Aysoud N 01 S INTHL
‘Wd9 sunl => NdE 41 3S73
Apoud SOLN INFHL
JNV6 > Bwif => Wv9 4l 3ST3
Auoud {enbs ‘sjeuituop §-N INJHL

{INd 11> swi] =>Nd9) 10 (INJE > sWilL => NVB) 10 (INV9 > swit => WvP) 4l INIHL
:Aepii4 1o ‘Aepsinyy ‘Aepsaupapp ‘Aepseny ‘Aepuopy = Aeq 4

s8|qe} -
slieyo sousnbas abessa -
2160] jeUORIPUOD -

syuswslinbal payndul

00
sBuimesp -
SAneLIeY -

sjuawaiinbas payndul usyo




US 9,063,673 B2

Sheet 33 of 43

Jun. 23, 2015

U.S. Patent

Jajjonuos uonesiil ((DSI) Heyd sausnbes sbessaul

-4 \
A - /
s \ abessal mojjek
abessaw pas obessow uosib
; - >0
abessalu moje.
g
abessaw uaaib 2 abessauw pai
obessaws mojjoh
<]
abessaw pai abessaus usalb
anpow Y6l SN 19|]0J)U09 UOHOSSIaIU] anpow 14bi| (-3

MOJjoA Usell pai usej 8
Al MOJjoA pai ¥
11 usaib pai 8
Zl pai mojjeh A
9l pai usalb /
2l MOJOA pai ¥
gl usaib pai g eceeceesscssenn
Al pal Moj[ok z 6% Old
2l pai uaaib g
ol >>O=®> pei 14
el usalb pai ¢
Al pai mojjah Z
11 pai usalb I

UCREIND SN M3 B
8]E]S J8|j0JjU0D UoYDsSIsIU 18|qR)




US 9,063,673 B2

Sheet 34 of 43

Jun. 23, 2015

U.S. Patent

apoo uoieoydde

Buidojeasp <

U LolIsueL ajels
wia)sAs uoyeoydde

1uby oy 8y J0j 7 Sjusissnbal uoneaydde

U UOIISUBJ] B181S
wajshs uoiesyjdde

JOJj043U00 UoHD3SIBL BYY 10} 07 siuswalinbas uogedydde

1S Ol
> }oeqpas)
soeqpasy 37 nun Bugse)
A
Y
P} 1un uopejuswsidul < —
A UOISIOAUODD
m sjuswainbal

800 | . uogsuey jBlS
Wg)sAs uoeoydde |

¢80 | | juonsues aEs
weyshs uoneoydde

ajnpow
UONEOHLIOA

ainpou sishjeue

L Lomsuel] 81e)s
wssAs uoneoidde

*80 | . uonsues siEls
waysAs uofeijdde

JBj0AU0D A0 aY) 10j 0Z Slustuaanbal uonedydde

¥z sioleweied

8] syuaualinbay

pepndu

500}
uofoeSqe siels

${00}
Butoord wiasoay

$|00} UDIANPaI 9)B)S

$|00}
Bupoayo spow

${00} Uopesojdxe
aoeds a)R)s

$/00} UONEDILIBA



US 9,063,673 B2

Sheet 35 of 43

Jun. 23, 2015

U.S. Patent

Wby mau
uo uiny ‘Wb pio o winy :uooe

bswu aneoa1 ‘ue 4By pro

J4BH M-3 3 JuBYl SN siojoe
I #18SY

| Jawg Wels tuonoe

saudxe g jewi 1y s1e1s

|043U00 UOHOBSIAIUL (SojoR
01 # 1SSV

M-3 o1 Bsus useub uonoe

salidxe Z Jawi f 21els

Wbl m
-3 R |O4JUOD UOROeSISIU '8J0j0.

6 # LSSY

S-N 01 Bsuwi pa: :uonoe

saudxe Z Jowy b alels

1oy
S-N % [04U0D U0j088I8JUL 18I0}

8 # 1SSV

Z Jawn Leys wuopoe

salidxe ¢ Jowy

[0JUOD UOIDBSIBUE |SI0j0R
L#1SSY

S-N o1 Bsui mojjeA uonoe

saundxs ¢ Jawi
1l
S-N 9 [0JU0D LORO8SIBIUI (SI0J.
9# LSSY

£ Jaluf Lels suonoe

saldxe g 1ewr 17 2iels

|0JU0D UOIDBSIS)LY (SI010.
G#1SSY

S-N 0} Bsw uaalb :uoioe

saldxe g Jewy 17 oe)s

by
SN % [0U00 UoH0asI8lL 1Si0j0e
¥ #13SY

M-3 o1 Bswi pas :uonoe

sandxe g Jawy 17 ee)s

b m
-3 % [041U0D UOH0asIa Siojoe

£#1SSY

Z lauy ye)s :uonoe

soldxe | Jawg

J0UOY UOa9SIaUI 1SIojoe
Z#18SY

M-3 01 Bsw mojjeA :uonde

soidxa § Jouny

Wb m
-3 R [04JU0O LOROSSILY SJ0lo.
L #1SSY




US 9,063,673 B2

Sheet 36 of 43

Jun. 23, 2015

U.S. Patent

o
D

pifeAl

UOR08SIBYUI UE J0j 808dS ajels

mojeh ysey - £

pas ysey — 4
MOJ[BA — A
usaib- 9
pai-y

€5 '9I4

MO||BA Usey
pai ysey
EETd
mojjoh

pau

~ N o<t 1O

ojels

1ubi e jo saejs




US 9,063,673 B2

Sheet 37 of 43

Jun. 23, 2015

U.S. Patent

- — — — — "

apos uonexdde
Buidojonap

anpotu by

J8jjoau0o
uonoes
-Jaul

JBjOAU0D

_
_
_
!
!
_
!
!
!
!
_
_
!
" |B4JUBD

»oeqpasy

3} yun Bugss)

Hoeqpos)

A

(s)einpow uoieLOjSUEI)

A

\

Y

so|diound
Buiwiwesboid
Ateuonn|ons

wyobe
pauilelepsaid

wojshs
UOole)NSUCo

wayshs Buiuued
peseq vy

5|00} uoliejUsRiduM

43
Jun syuswainbal

<—

0z suswaiinbal
uoneaydde

«<— {7 sioewesed

[ sjuswaanbai
panndul



US 9,063,673 B2

Sheet 38 of 43

Jun. 23, 2015

U.S. Patent

apoo uopeoldde
Budojensp

anpoul
uosuedwos

sjnpow
UONNIaX8 158}

snpow uonessuab

9SED 159}

71 wun
uofjejuswwadu

T~

” Jlun sjuawainbal

4

<—

// {7 Swewainbal

uoneoldde

<— ¥7 Sisjoweled

8T swuswainbal
papndul



US 9,063,673 B2

Sheet 39 of 43

Jun. 23, 2015

U.S. Patent

U# UONRJR[O8P JO JUssle)s
L-U# LOIEIRSD IO JUBWSIB)S
°
°

G# UONBIBDEP JO JUBWSIE)S
p# UONRIRIO8D JO JUBLUSIElS
C# UONBIBEP 10 JUBWSIE)S
Z# UONBIB[O8D JO JUSLLBIElS
L # UOUBIR8D IO JUBWSIE)S

3z apoo uojeoydde

=

JLROE
swe.beip
ss8004d sSBUISNG sweiBeip Aynioe
afienfue|
Buwesboud susetbeip 2po3 opnasd
anponas
Ut 8poo
sweibeip S90UjBW
afienbug) UOAGIBIEIS SB|GE) 8}B]1S
Bugepow JusAS/eley
S/anow swesberp sweibelp
fep suIyoBW 9)B)S abessaw

STEETE T

Bunssy

yoRqPes)

yaeqpoesy

U uonisues sjels
welsfs uoneoijdde

I EEIEN

®
[ 4
L ]

24 UOHISUBI] BlE]S
wajsAs uoneaijdde

L# uoiisue.] a)e1s
welshs uoneoydde

7z sielswedled

(07 siuswaiinbai
uogesydde




US 9,063,673 B2

Sheet 40 of 43

Jun. 23, 2015

U.S. Patent

aso

S ETNEIE]

} 14

b

UONOUN [0AU0D UOI0aSISUI

(asH) wesbeip sunjonas elisoduiod

aso

SHNS81 SjeIpaULeUl

}Jeqpasy

¥oegpes)

U UopisuBs S1els
wa)sAs uonealdde

Z4# uonisuey alels
waysAs uoneoydde

| # UoRisuel) B)R1S
wasAs uonesydde

0Z Sjuswaiinbay
uoneoydde

soses asn Juauoduiod

sjuswiainbal
feuonounjuouy

gt
sjuswaanbal payndul



US 9,063,673 B2

Sheet 41 of 43

Jun. 23, 2015

U.S. Patent

69 "Old
— I
Aoeqpas;
Al\e Bunsay

STy ol
SjRIpaLLIRIU

P
84N é

welbeip 21e1s sjnpow by
weibelp aie1s ajnpous b o*

U# UonIsue.} 81218

YOBGP9S] wialsAs uoneoydde

5000} sAneIal

§000] sAlEIRH

Z# Uonisue.) 9jes
waishs uoneoydde

L# UoHISUR.] 9je1s
welshs uoheoydde

{7 swawainbal
uoneoydde

weiBelp 1e}s J8[j0Uas UoNoesIalu

uieibelp 21e1s JajjoJjLoD LUonoSsaluI _...
wesbeip 81e)s JojjonuU0 {BUSD aso
) ) :
®
®
aso
s)nsay
QjeIpaULIaIL Snoaaid




US 9,063,673 B2

Sheet 42 of 43

Jun. 23, 2015

U.S. Patent

uonesyoads 1oa010.d

uonesyoads joa0104d

S ELEIET

spoadse wioge(d (Ws)
sulyoep 9jelsS + dsO
® .
b4 .
. .
sjoadse wioye|d (Ws)
SUIDEIN 9J)S + ISD

SHNS3 BJRIPBLLISILI JUALIND

Bupsa)

Noeqpes)

Yoeqpas)

N

U uonisues sjels
wajsAs uonesydde

Z# uomsuen alels
uiglsAs uogeaydde

}# Uopisuen sjels
wajshs uoyeoydde

07 siswainbay
uoneondde

uieibelp sjeis

aso

swswinoop uuoped

UONIULEP JOINBYS]

weibeip sjels

aso

8l
syuawainbas payndul

synsal

ajeipaLuIsitl SnaiAs.d




US 9,063,673 B2

Sheet 43 of 43

Jun. 23, 2015

U.S. Patent

Yoeqpasy
19 'Ol4 Sunsay \J
Sdoo|
.%42_. Ug uopisuedl o1els
Noeqpeay walsAs uonearjdde
°
.
®
Uff UOLIEIR|DDP 1O JUDWILL)S Z# uopisuely ayels
T-U# UOLIRIR]IAP JO JUIWIELS wa3sAs uoyesijdde
]
° T# uonisuesy ajels
° wia3sAs uouedyjdde
G# UDLRIBIDIP 10 USRS 07 suswsinbay
p# UONIRIRI3P 10 JUBWIBIeIS uoneotjdde
£# UOLBIRDAP 10 JUIWIRILIS
Z# UOLIRIBPDIP 10 JUSWIIL]S
T# UoQeIRPAP O JUSWBILIS
NS uopesyioads
3poo uonedyjdde + @S pajlelsp josoroid
S}NSe. Blelpalialul JUBLIND . ®
e .
° .
uoneuaWwINIop NS uonesyiads
wiope|d + @dSD pajesp josojoud

SHNS94 eIpawIauUl snojadud

uoQuYap JoiARYBq

8T siuawasnbas
panndul



US 9,063,673 B2

1
SYSTEM AND METHOD FOR
IMPLEMENTING APPLICATION CODE
FROM APPLICATION REQUIREMENTS

CROSS REFERENCE TO RELATED PATENTS

This patent application is claiming priority under 35 USC
§120 as a continuation in part patent application of U.S.
Utility patent application entitled System and Method for
Generating Application Code, having a filing date of Aug. 30,
2011, and a Ser. No. 13/221,595, now U.S. Pat. No. 8,972,
928, issued on Mar. 3, 2015, which is incorporated herein by
reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

NOT APPLICABLE
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to computing systems implementing soft-
ware applications.

2. Description of Related Art

Many devices include a conventional computer architec-
ture of a central processing unit, memory, a memory manage-
ment unit, and a peripheral management unit. Such devices
include computers, laptop computers, handheld computers,
some cellular telephones, some video game devices, etc. A
common theme for these devices is that they execute one or
more algorithms to achieve a desired result and/or to perform
a desired function. Other devices, while not having the con-
ventional computer architecture, include a processing unit
and memory to execute one or more algorithms. For example,
some video game devices, some cellular telephones, some
personal audio/video player, etc., include a processing unit
and memory but not the conventional computer architecture.

Regardless of the specific architecture of devices that
execute algorithms, they all include a hardware component
and a software component. The software component gener-
ally includes three types of software: operating system (OS),
application program interface (API), and applications. In
general, an operation system has four primary functions: pro-
cess management, memory management, file system man-
agement, and device management. Applications include user
applications (e.g., word processing, calendar, spreadsheet,
video game, etc.) and/or middle-ware applications (e.g., driv-
ers, OS specific APIs, etc.).

The development of software for devices is an ever-in-
creasing challenge since the devices are required to do more
and to do it faster. Current software development techniques
include a combination of manual steps and automated steps.
In general, software development includes four primary
steps: requirements, architecture, design, and code genera-
tion, each of which includes a combination of manual func-
tions and automated functions. In addition, each primary step
includes a form of testing.

An objective of the requirements step is to develop a list of
requirements that identify the needs and/or conditions for the
software development project to meet. The list of require-

10

15

20

25

30

35

40

45

50

55

60

2

ments may include functional requirements (e.g., what
actions, tasks, and/or activities the system must do) and non-
functional requirements (e.g., statements about the system
such as performance levels, availability, reliability, etc.). A
functional requirement contains a unique name, a description
of the required behavior, and a rationale for the required
behavior.

While there has been limit success in automating portions
of the requirements steps (e.g., SPIN, PBS, Validator), it is
still primarily a manual step. As such, modeling the require-
ments to test for incompleteness and/or inconsistencies is far
from complete due the extremely large state space of the
system and the lack of automated testing. Another issue with
automating the generation of requirements is the inconsis-
tency of language, descriptors, diagrams, etc. that are used to
represent the requirements.

The architecture step of software development defines the
structure of the system, which identifies software compo-
nents and the relationship therebetween. Typically, the soft-
ware architecture is organized in views that may include
functional and/or logical views, code and/or module views,
development and/or structural views, concurrency, process
and/or thread views, physical and/or deployment views, user
action and/or feedback views, data views, etc.

With respect to the architecture step, there have been sev-
eral languages developed to describe software architectures
(e.g., architecture description languages (ADL)). There are
various implementations of the ADLs including AADL,
Wright, Acme, xADL, Darwin, and DAQP-ADL. While such
automation exists, they are still prone to manual errors and
incompleteness of testing. In addition, they lack a standard-
ized language, which makes utilization of the software archi-
tecture by the other primary steps of software development a
manual function.

The design step of software development defines a low-
level component design for the system. The design step may
also address algorithm implementation issues of the system
and architecture issues using one or more design concepts
(e.g., abstraction, refinement, modularity, software architec-
ture, control hierarchy, structural partitioning, data structure,
software procedure, and/or information hiding). The result-
ing design may be platform specific or independent and it
includes story-board(s), modeling language model(s), and/or
flow chart(s).

With respect to the design step, there have been several
modeling languages developed to produce the modeling lan-
guage model. The modeling languages may be graphical or
textual for various types of design step objectives. For
example, BPMN (business processing modeling notation) is a
process modeling language; EXPRESS is a general purpose
data modeling language; EEML (extended enterprise model-
ing language) is a business process modeling language that
applies across a number of layers; FMC (fundamental mod-
eling concepts) is a modeling language for software intensive
systems; DEF is a family of modeling languages; JSP (Jack-
son structure programming) is a method for structured pro-
gramming of data stream structure and programming struc-
ture correlation; design description language for modeling
large object orientated programs (e.g., Java, C++, etc); UML
(unified modeling language) describes a software design
structurally and behaviorally and includes graphical notation;
and alloy describes a software design structurally and behav-
iorally and includes a concise language based on a first order
relational logic.

The code generation step of software development
includes writing source code in a programming language to
perform the desired behaviors defined in the previous soft-



US 9,063,673 B2

3

ware development steps. The programming language may be
of one or more programming language categories that
includes: Array languages (e.g., Fortran 90), Aspect-oriented
languages (e.g., Aspect C++), Assembly languages, author-
ing languages, command line interface languages, compiled
languages (e.g., C++, JAVA, etc.), concurrent languages,
curly-bracket languages, data flow languages, data-oriented
languages, data structured languages, declarative languages,
esoteric languages, extension languages, fourth generation
languages, functional languages, interactive mode languages,
interpreted languages, iterative languages, list based lan-
guages, little languages, logic based languages, machine lan-
guages, macro languages, meta-programming languages,
multi-paradigm languages, numerical analysis, non-English
based languages, object oriented class based languages,
object oriented prototype based languages, off-side rule lan-
guages, procedural languages, reflective languages, rule
based languages, scripting languages, stack based languages,
synchronous languages, syntax handling languages, visual
languages, Wirth languages, and XML based languages.

The code generation step of software development also
includes requirements analysis and testing the source code.
Requirements analysis of the source code may be done using
Use Case analysis to verify that source code achieves the
desired behavior and avoids dead locks. Testing of the source
code generally includes value modeling, implementation, and
debugging. Modeling of source code may be done using one
of many modeling techniques (e.g., object-oriented analysis
and design, model driven architecture, etc.).

While the above described software development process
enables the creation of significant amounts of software annu-
ally, it is far from an optimal process and is far from fully
automated or near-fully automated. Since each primary step
(e.g., requirements, architecture, design, and code genera-
tion) includes multiple manual operations and, for the auto-
mated operations, has little to no standardized implementa-
tion requirements and/or formatting requirements, each
primary step is almost a completely autonomous process. As
such, automation of the software development process using
the current techniques is highly improbable due to the
autonomy of each primary step, the many manual operations,
and/or other factors.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a system in accordance with the present invention;
FIG. 2 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 3 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 4 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 5 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 6 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 7 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 8 is a schematic block diagram of another embodi-
ment of a system in accordance with the present invention;
FIG. 9 is a schematic block diagram of an embodiment of
a computing entity in accordance with the present invention;
FIG. 10 is a logic diagram of an embodiment of a method
that may be executed by a system in accordance with the
present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 12 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 13 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 14 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 15 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 16 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 17 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 18 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 19 is a logic diagram of another embodiment of a
method that may be executed by a system in accordance with
the present invention;

FIG. 20 is a schematic block diagram of an embodiment of
arequirements unit in accordance with the present invention;

FIG. 21 is a logic diagram of an embodiment of a method
that may be executed by a requirements unit in accordance
with the present invention;

FIG. 22 is a schematic block diagram of another embodi-
ment of a requirements unit in accordance with the present
invention;

FIG. 23 is a logic diagram of an embodiment of a method
that may be executed by a requirements unit in accordance
with the present invention;

FIG. 24 is a schematic block diagram of an embodiment of
an implementation unit in accordance with the present inven-
tion;

FIG. 25 is a logic diagram of an embodiment of a method
that may be executed by an implementation unit in accor-
dance with the present invention;

FIG. 26 is a schematic block diagram of another embodi-
ment of an implementation unit in accordance with the
present invention;

FIG. 27 is a schematic block diagram of an embodiment of
a testing unit in accordance with the present invention;

FIG. 28 is a logic diagram of an embodiment of a method
that may be executed by a testing unit in accordance with the
present invention;

FIG. 29 is a logic diagram of another embodiment of a
method that may be executed by a testing unit in accordance
with the present invention;

FIG. 30 is a logic diagram of another embodiment of a
method that may be executed by a testing unit in accordance
with the present invention;

FIG. 31 is a logic diagram of another embodiment of a
method that may be executed by a testing unit in accordance
with the present invention;

FIG. 32 is a logic diagram of another embodiment of a
method that may be executed by a testing unit in accordance
with the present invention;

FIG. 33 is a diagram of another embodiment of a system in
accordance with the present invention;



US 9,063,673 B2

5

FIGS. 34-39 are diagrams of functional levels ofthe system
of FIG. 33 in accordance with the present invention; and

FIGS. 40-61 are diagrams of an example of generation
application code for a traffic light control system in accor-
dance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a system 10 that includes a requirements unit 12, an imple-
mentation unit 14, and a testing unit 16. Each of the require-
ments unit 12, the implementation unit 14, and the testing unit
16 may be constructed from separate centralized computing
entities, from separate distributed computing entities, from a
shared computing entity, from a shared distributed computing
entity, and/or a combination thereof. As used herein, a com-
puting entity includes one or more processing modules,
memory, local and/or wide area network connection capabili-
ties, and other components as may be needed to perform the
operations of the requirements unit 12, the implementation
unit 14, and/or the testing unit 16.

A processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro-
cessor, microcomputer, central processing unit, field pro-
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera-
tional instructions. The processing module may have an asso-
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-61.

In an example of operation, the requirements unit 12
receives inputted requirements 18 and parameters 24. The
parameters 24 prescribe physical, logical, and/or develop-
mental constraints on implementing the application code 26.
For example, the physical parameters may include physical
limitations of the system (e.g., clock rates, processing rates,
data transference rates, etc.) and logical parameters may
include software limitations (e.g., desired programming lan-
guage, desired operating system, desired API, etc.). The sys-
tem may generate the parameters 24, they may be inputted to
the system 10, and/or a separate unit may generate the param-
eters 24 based on the client inputted requirements.

The inputted requirements 18 provide information regard-
ing the desired operations, desired functions, desired results,

10

15

20

25

30

35

40

45

50

55

60

65

6

user input/output options, system constraints, and/or opera-
tional constraints (e.g., response times) of the resulting appli-
cation code (i.e., software). For example, the inputted
requirements may be formatted in one or more of if-then-else
statements, state table(s), message sequence chart(s) (e.g.,
MSC), or another agreed up format.

If the inputted requirements 18 are not in the desired for-
mat, the requirements module 12 and/or an external process-
ing unit may translate client inputted requirements (e.g.,
operational tables, system diagrams, timing diagrams, narra-
tive descriptions, etc.) into the desired format. Alternatively,
the translation of the client inputted requirements into the
desired format might be a manual process. As yet another
alternative, the translation of the client inputted requirements
into the desired format might be a combination of a manual
process and an automated process. For example, a narrative
description of a requirement may be manually translated into
adiagram, which is inputted into the system. The system then
automatically converts the diagram into the desired format.

The requirements unit 12 generates application require-
ments 20 from the inputted requirements 18 and the param-
eters 24. The application requirements 20 include one or more
application system state transition, which will be described
below. The requirements unit 12 outputs the application
requirements 20 in accordance with a system communication
protocol 22.

The system communication protocol 22 includes a data
content protocol and/or a communication protocol. The data
content protocol defines data communication formatting for
communications between the units 12, 14, and 16, and may
further define the communication within the units 12, 14,
and/or 16. For example, the system communication protocol
22 may dictate that the output format of one unit (e.g., the
requirements unit) correlates to the input format of another
unit (e.g., the implementation unit, the testing unit). This may
be a direct correlation (i.e., the output of one unit is in the
desired format for the input of the other input) or an indirect
correlation (i.e., the unit receiving the output of another unit
includes a translation module to translate the output into the
desired format).

As another example, the data content protocol may pre-
scribe specific formatting of the data (e.g., logic statements,
MSCs, application system state transitions, state diagrams,
programming language, etc.). As yet another example, the
communication protocol may define the communication
interfacing (e.g., Ethernet, fire-wire, WLAN protocol, WAN
protocol, internet protocol, etc.) between the units 12-16.

In another example, the system communication protocol
22 may prescribe a common communication protocol (i.e.,
the communication and/or data content between the units is in
the same format) or distributed communication protocol (e.g.,
the communication and/or data content between the require-
ments unit and the implementation unit uses a first protocol,
the communication and/or data content between the require-
ments unit and the testing unit uses a second protocol, and the
communication and/or data content between the implemen-
tation unit and the testing unit uses a third protocol). As such,
the units use the prescribed system communication
protocol(s) for communication therebetween.

In yet another example, the units 12-16 may negotiate the
system communication protocol 22 to use. For example, the
requirements unit 12 and the implementation unit 14 may
negotiate a particular data content protocol (e.g., state tables
and if-then-else statements) and a particular communications
protocol (e.g., 100 Gbps Ethernet). In a still further example,
the system communication protocol 22 may be at least par-
tially based on the operating system(s) of the computing



US 9,063,673 B2

7

entities. For instance, if a first computing entity facilitates the
requirements unit using a first operating system and a second
computing entity facilitates the implementation unit using a
second operating system, the data content protocol may need
to be adjusts such that it is supported by both the first and
second operating system. Such an adjustment may be done
via a look up table, by negotiation, or some other means.

The requirements unit 12 outputs the application require-
ments 20 in accordance with a system communication proto-
col 22 to the implementation unit 14 and/or to the testing unit
16. After receiving the application requirements 20 and the
parameters 24, the implementation unit 14 generates applica-
tion code 26 based on the application requirements 20, the
parameters 24, and feedback from the testing unit 16. The
implementation unit 12 outputs the application code 20 in
accordance with the system communication protocol 22.

The testing unit 16 receives the application requirements
20 and the application code 26 in accordance with the system
communication protocol 22. The testing unit 16 may also
receive the parameters 24. Based on one or more of these
inputs, the testing unit 16 tests the application code 24 and
provides feedback thereof to the requirements unit 12 and/or
to the implementation unit 14.

As a more specific example of operation, the implementa-
tion unit 14 generates, in an iterative manner, application code
24 based on the application requirements 20, parameters 24,
and feedback from the testing unit 16 using one or more
implementation tools. The application requirements 20
include a plurality of application system state transitions
(ASST), which will be described in greater detail below.

As the implementation unit 12 iteratively generates the
application code from the application requirements 20,
parameters 24, and testing unit feedback 32, it also selects one
or more implementation tools. Note that the implementation
unit 12 may select one or more new implementation tools for
each iterative loop of generating the application code or use
the same implementation tools from numerous iterations.
Further note that the iterative process of developing the appli-
cation code may go through several phases, which may be
arbitrarily ordered. For example, the phases may include an
architecture level design phase, a high level design (HLD)
phase, a low level design (LLD) phase, and an application
code level phase.

To test the developing application code 26, the testing unit
16 generates test cases (e.g., input stimuli and expected
results corresponding to the current level of development of
the application code at a level of abstraction corresponding to
the level of development of the application code). The testing
unit 16 uses the test cases to determine whether the develop-
ing application code 26 is functions as expected for this level
of development. When it is, the testing unit generates feed-
back indicating that the developing application is functioning
in accordance with the application requirements. When the
application code 26 is not functioning as expected, the testing
unit 16 generates feedback indicating that the developing
application is not functioning in accordance with the appli-
cation requirements.

When the implementation unit 14 receives feedback indi-
cating that the developing application is not functioning in
accordance with the application requirements, it reverts the
iterative process to a previous step that received favorable
testing unit feedback, selects one or more new implementa-
tion tools, and continues generating the developing applica-
tion code. If the next attempt at generating the developing
application code is successful, the implementation unit con-
tinues generating the application code until it has reached a
desired level of completeness (e.g., it meets the application

20

30

40

45

50

8

requirements and passes the testing performed by the testing
unit). If, however, the next attempt at generating the develop-
ing code is not successful, the implementation unit again
reverts the iterative process to a previous step that received
favorable testing unit feedback and remains in this reverting
process until the generating the developing application code
is successful or until exhaustion of implementation of options
(which indicates that there is an application requirements
error in light of the parameters). Note that the iterative process
may require thousands, millions, or more steps to reach a
favorable outcome.

FIG. 2 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. In this
embodiment, one or more computers 34 facilitate the require-
ments unit 12; one or more computers 36 facilitate the imple-
mentation unit 14; and one or more computers 38 facilitate the
testing unit 16. Each of the computers within the one or more
computers 34, 36 & 38 includes one or more network inter-
faces for interfacing with a local area network (LAN) and/or
a wide area network (WAN) (e.g., the internet).

As shown, the requirements unit 12 receives the inputted
requirements 18, which includes non-function requirements,
component use cases, correctness criteria, scenarios, behav-
ior definitions, platform documentation, and/or protocol
documentation. Non-function requirements generally
include information regarding how to judge the operation of
the resulting application code and not the specific behavior of
the application code. Component use cases define interaction
between a component of the desired application code and a
user that is outside of the system to achieve a specific goal.
The correctness criteria provides indications regarding avoid-
ance of safety violations while generating the application
requirements 20.

A scenario is typically a narrative description of an inter-
action(s) between one or more users (external to the system
and/or within the system) and the system (i.e., the desired
application code) during normal use of the system. A behav-
ior definition is a high level definition of how the system is to
met an objective, produce a desired result, process a given
input, etc. The platform documentation describes one or more
of the desired hardware architecture of the system, the soft-
ware framework, operating system, programming language,
graphical user interface, and runtime libraries.

The requirements unit 12 processes the inputted require-
ments 18 to produce application requirements 20. As shown,
an application requirement 20 includes a plurality of applica-
tion system state transitions, each of which identifies one or
more pre-conditions, one or more actions, and one or more
post-conditions. The requirements unit 12 outputs the appli-
cation requirements 20 via the LAN and/or WAN in accor-
dance with the system communication protocol 22.

The implementation unit 14 receives the application
requirements 20 and the parameters 24 via the LAN and/or
WAN 30 in accordance with the system communication pro-
tocol 22. The implementation unit 14 processes the applica-
tion requirements 20 in light of the parameters and test feed-
back 32 to generate application code 26. During later stages
of development, the application code 26 includes a plurality
of programming statements.

The testing unit 16 receives the application requirements
20 and the application 26 via the LAN and/or WAN 30 in
accordance with the system communication protocol 22. The
testing unit 16 tests the application code 26 in accordance
with the application requirements 16 (and the parameters 24)



US 9,063,673 B2

9

to produce the test feedback 32. The testing unit 16 outputs
the test feedback 32 in accordance with the system commu-
nication protocol 22.

FIG. 3 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. Each of
the requirements unit 12, the implementation unit 14, and the
testing unit 16 includes a protocol negotiating module 43. In
this instance, each of the units 12-16 negotiates the data
content protocol and/or the communication protocol it will
use to communicate with the other units.

FIG. 4 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. Each of
the implementation unit 14 and the testing unit 16 includes a
protocol conversion module 41. The protocol conversion
module 41 is operable to convert an input from one data
content protocol to another data content protocol. For
example, the protocol conversion module 41 of the imple-
mentation unit 14 converts the feedback 32 from one data
content protocol to another.

FIG. 5 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. Each of
the requirements unit 12 and the implementation unit 14
includes a protocol conversion module 41. The protocol con-
version module 41 is operable to convert an output from one
data content protocol to another data content protocol. For
example, the protocol conversion module 41 of the require-
ments unit 12 may convert the application requirements 20
from one data content protocol to another before outputting it
to the implementation unit 14. Note that the system 10 may
include any combination of the embodiments of FIGS. 3-5.

FIG. 6 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. The
requirements unit 12 includes the requirements conversion
module 21 (converting the customer inputted requirements
into the inputted requirements and then converting the input-
ted requirements into the application requirements), the veri-
fication module 23, and an analysis module 25.

In an example of operation, the requirements conversion
module 21 generates the application requirements 20 from
the inputted requirements 18 and parameters 24 based on
verification feedback. As previously discussed, the inputted
requirements 18 may include conditionals, state tables, and/
or MSCs, which may be generated from client inputted
requirements. The parameters 24 include one or more of, but
are not limited to, application system behavioral constraints,
application system correctness conditions, an application
system platform (e.g., an operating system, computing
engines, a programming language of the application code),
behavior definitions (e.g., operational tables, conditionals,
etc.), and/or data definitions (e.g., message and command
descriptions, etc.).

The requirements conversion module 21 generates a plu-
rality of application system state transitions 20 as the appli-
cation requirements 20 from the inputted requirements 18 and
the verification feedback. As a further example of operation,
the requirements conversion module 21 produces verified
application requirements 20 based on the inputted require-
ments 18 and verification module feedback. This is generally
an iterative process where, for example, application require-
ments of iteration “n” are used to generate application
requirements of iteration “n+1”. The iterative process ends
when the application requirements are verified to a desired
level of completeness. For instance, the requirements conver-

20

25

30

40

45

50

55

10

sion module may produce the plurality of application system
state transitions by combining and/or converting the inputted
requirements into the application system state transitions for-
mat over a series of iterations.

In addition, the requirements unit 12 produces the applica-
tion system state transitions in accordance with valid states of
the application system’s state space, which encompasses all
possible states of the application system (e.g., millions, bil-
lions, or more possible states). As such, the resulting appli-
cation requirements specify a valid subset of the application
system state space where the application system may operate.

During the generation of the applications requirements 20,
the requirements conversion module 21 sends current repre-
sentations of the application requirements 20 to the verifica-
tion module 23 for feedback. The requirements conversion
module 21 adjusts the generation of the application require-
ments 20 based on the verification feedback. In response to
such feedback, the requirements conversion module 21 may
change individual application state transitions, it may add
new application state transitions, or it may remove applica-
tion state transitions from the current application require-
ments. The requirements conversion module may operate on
all inputted requirements, or it may operate on incrementally
larger portions of the inputted requirements.

The verification module 23 receives the application system
state transitions from the requirements conversion module as
they are being generated to verify that they are consistent with
the valid application system states and other correctness cri-
teria (e.g., the application requirements should not create a
safety violation, etc.). The verification module 23 uses one or
more verification tools to verity the application requirements,
where the verification tools include, but are not limited to,
theorem proofing tools, model checking tools, state space
exploration tools, state abstraction tools, state reduction tools,
and/or combinations of such tools). The verification tools
may operate on concrete application system states (where all
variables of the application system state have a determined
value), or they may operate on symbolic application system
states (where the variables of the application system state may
not have a determined value).

The selection of a verification tool, or tools, may be based
onone or more of, but are not limited to, a number of available
application system state transitions, the number of previous
conversion/verification iterations, verification tools previ-
ously used, previous and/or current verification results, a
predetermination, a lookup, a command, and/or available
verification tools. Note that the verification module 23 may
utilize one or more tools in sequence and/or in parallel prior to
generating the verification feedback. For example, the verifi-
cation module may determine to start with the theorem prov-
ing tool to verify correctness conditions for the application
system state transitions and then utilize the model checking
tool to determine the reachability of application system states
that have been established to be incorrect.

As a further example, the verification module may select
the tool to apply by consulting an expert system that has
captured verification knowledge in the form of rules that
guide the selection of the tool. As another example, the veri-
fication module may have a predetermined algorithm for
selecting the tool. As yet another example, the verification
module may select an applicable tool based on evolutionary
programming principles. As a still further example, the veri-
fication module may select a tool as determined by an artifi-
cial-intelligence-based planning system. Other means for
selecting the verification tools are also possible.

The verification module 23 may select the verification
tool(s) by taking into account the inputted requirements,



US 9,063,673 B2

11

application requirements generated so far, previous interme-
diate results of developing the application requirements,
progress on creating application requirements, the verifica-
tion module feedback of previous applications of a tool, the
verification tools already used, the number of times verifica-
tion tools have been used, and/or available verification tools.

The verification feedback, which may be produced by the
analysis module 25 based on the results of the verification
module, indicates to the requirements conversion module 21
whether the verification results compare favorably to one or
more verification thresholds such as completeness (no dead-
lock states, i.e., in any application system state that is not a
terminal state, another application system state transition
may be performed), consistency (no non-deterministic states,
i.e., in any application system state, at most one application
system state transition may be performed), and/or safety (i.e.,
a certain condition holds at every application system state or
does nothold at every application system state, e.g., resources
are always released before they are acquired, timers always
expire before they are set) as determined by the parameters
24). Note that the verification module 23 may determine to
utilize a different verification tool if the current verification
tool is not producing verification results within a desired
timeframe.

When the verification results do not compare favorably to
a verification threshold, the analysis module 25 generates an
error indication and provides it to the requirements conver-
sion module. Once the error is reported, the verification mod-
ule 23 may restart the verification process where it left off
prior to when it discovered the error.

FIG. 7 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. The
implementation unit 14 includes one or more transformation
modules 27 to generate application code from the application
requirements 20.

As the implementation unit 12 generates the application
code 26 from the application requirements 20, parameters 24,
and testing unit feedback 32, it selects one or more imple-
mentation tools. These implementation tools are used by the
implementation unit to incrementally and/or iteratively create
the implementation from the application requirements. This
process may require thousands, millions, or more tool appli-
cations in order to produce the final implementation. The
implementation unit may select one or more new implemen-
tation tools for each tool application or use the same imple-
mentation tools for numerous tool applications.

At each iterative or incremental application of the imple-
mentation unit, the implementation unit takes the result of the
previous application (or the application requirements, if this
is the first application) and generates a new intermediate
result of the developing application code (or the application
code, if this is the last application). The intermediate results
may be in the form of, but are not limited to, message dia-
grams, state machine diagrams, state tables, state/event matri-
ces, pseudo code, structure diagrams, models or diagrams of
a modeling language such as, but not limited to UML, SDL,
VHDL, Verilog, BPML, SysML, etc., or suitable extensions
or profiles thereof, code in a programming language or a
suitable extension of such programming language, activity
diagrams, business process diagrams. For any of these, the
intermediate results may be in either textual or graphical
form.

In an example, the implementation unit selects the tool to
apply by consulting an expert system that has captured pro-
gramming knowledge in the form of rules that guide the
selection of the tool. In another example, the implementation

30

35

40

45

12

unit has a predetermined algorithm for selecting the tool. In
yet another example, the implementation unit selects an
applicable tool based on evolutionary programming prin-
ciples. In a further example, the implementation unit selects a
tool as determined by an artificial-intelligence-based plan-
ning system. Further, or in addition to, the implementation
unit selects the implementation tool(s) by taking into account
the application requirements, previous intermediate results of
the developing application code, progress on creating appli-
cation code, the testing unit feedback on previous intermedi-
ate results, the implementation tools already used, the number
ofiterations for which implementation tools have been used,
and/or available implementation tools.

The implementation tools include specific-purpose devel-
opment tools and/or general-purpose development tools in
the form of artificial intelligence (Al) based planning system
implementation tools, predetermined algorithm tools, con-
sultation system tools, and/or evolutionary programming
principles tools. The specific-purpose development tools
include tools to implement application code for a particular
target processor and other constraint parameters. The gen-
eral-purpose development tools include tools to implement
application code based on common computing principles that
are not specific to a given target processor or other constraint
parameters. Specific-purpose and general-purpose develop-
ment tools may include, but are not limited to, one or more of
the following: compilers, program rewriting systems, term
rewriting systems, tree rewriting systems, graph transforma-
tion systems, model transformation systems, macro expan-
sion systems, aspect-oriented development systems, source-
to-source translators, data-type refinement systems, program
slicing systems, program pre-processors, program compre-
hension systems, program morphing systems, algebraic
manipulation systems, optimizations systems, or other sys-
tems that are able to make incremental changes to an existing
model or program. The individual implementation tools
range in size from simple transformation rules that make very
small, localized, incremental changes to the syntactic form of
the intermediate result (e.g., changing an increment operation
into an “add 17 operation) to aspect-oriented systems that can
make very large changes across the whole of the intermediate
result.

The process of developing the application code may go
through several incremental steps. For example, for the illus-
trative software development process described in FIG. 33,
the incremental steps may include an architecture level design
increment, a high-level design (HLD) increment, a low-level
design (LLD) increment, and a code development increment
(which is further described with reference to FIG. 61). The
iterative process may be organized in arbitrary and conve-
nient incremental steps and is not limited to the steps men-
tioned as examples. Note that the application code takes into
account architectural limitations and/or target implementa-
tion parameters (e.g., computing device and/or communica-
tions limitations).

The testing unit 16 generates feedback indicating whether
ornot the developing application is functioning in accordance
with the application requirements. If the developing applica-
tion is not functioning in accordance with the application
requirements, the development process must be reverted to a
previous step and corrected, up to and including revising the
original requirements.

In a further example of operation, the implementation unit
14 generates application code based on the application
requirements 20, parameters, and feedback from the testing
unit 16 using one or more implementation tools. For instance,
the application code may comprise a series of sequential or



US 9,063,673 B2

13

concurrent statements and declarations 1-n that implement
the application system behavior. As the implementation unit
generates the application code from the application require-
ments, parameters and testing unit feedback, it selects one or
more implementation tools. As discussed above, the imple-
mentation unit may select one or more new implementation
tools for each loop of generating the application code or use
the same implementation tools for numerous loops.

FIG. 8 is a schematic block diagram of another embodi-
ment of a system 10 that includes the requirements unit 12,
the implementation unit 14, and the testing unit 16. The
testing unit 16 includes a test case generation module 29, a
test execution module 31, and a comparison module 31. In
general, the testing unit 16 tests the application code 26 as the
implementation unit is generating it. The testing unit 16 may
also test intermediate results of the developing application
code during the generation of the application code.

In an example of operation, the system 10 converts, or
enables an operator of the system to convert, the application
requirements 20 into application system test cases, which are
typically in a format indicating stimuli input into the appli-
cation system and the corresponding responses emitted from
the application system, if any. The test cases may be in a
standardized format, such as TTCN, MSC, or in any other
format suitable to express application system test cases. The
test creation module may take into account parameters indi-
cated desired application system behavioral scenarios or pro-
hibited application system behavioral scenarios.

The test execution module 31 accepts the application sys-
tem test cases and converts them to the appropriate level of
abstraction for the artifact to be tested. For example, when the
implementation unit has generated a representation of the
application system as high-level design model, the test execu-
tion module converts the test cases into tests suitable to exer-
cise a high-level design model. When the application unit has
generated application code, the test execution module con-
verts the test cases into tests suitable to exercise the applica-
tion code. The test execution module 31 then stimulates the
application system generated by the implementation unit with
the test cases and collects the application system response.

The comparison module 33 accepts the test cases from the
test creation module and the application system response
from the test execution module and compares the observed
behavior of the application system with the prescribed behav-
ior described in the test cases. The comparison module 33
then generates feedback 32, which includes a description of
the observed application system behavior and its deviation
from the prescribed behavior, if any. The comparison module
provides the feedback 32 to the implementation unit 14,
which uses the feedback to further transform the application
system (e.g., generate the application code). In another
example, the comparison module 33 may provide feedback to
the requirements unit 12 if it is determined that an error arose
because of an application requirements error.

FIG. 9 is a schematic block diagram of an embodiment of
a computing entity 70 that includes one or more input/output
(I0) modules 72, a processing module 74, and memory 76.
The processing module 74 may be a single processing device
or multiple processing devices as previously defined. The 10
module(s) 72 provide connectivity to another computing
entity, to a LAN, and/or to a WAN. Note that the computing
entity 70 may be a stand-alone computer, may be a portion of
a computer (e.g., a computer includes a plurality of comput-
ing entities), and/or may be a plurality of computers. Further
note that a computer may be a discrete device and/or be a

20

25

30

40

45

50

55

14

cloud computing device. Still further note that the computing
entity 70 performs one or more of the methods illustrated in
FIGS. 1-61.

FIG. 10 is a logic diagram of an embodiment of a method
that may be executed by the computing entity 70. The method
begins at step 80 where the computing entity generates, in
accordance with a system communication protocol, applica-
tion requirements from inputted requirements and param-
eters. The application requirements include a plurality of
application system state transitions. An application system
state transition includes a standardized format for identifying
one or more pre-conditions, one or more actions, and one or
more post-conditions.

The system communication protocol includes a data con-
tent protocol and/or a communication protocol. The data con-
tent protocol includes an output definition for one or more of
the requirements unit, the implementation unit, and the test-
ing unit; an input definition for the one or more of the require-
ments unit, the implementation unit, and the testing unit;
and/or a correlation of an output of the one or more of the
requirements unit, the implementation unit, and the testing
unit to an input of another one of the one or more of the
requirements unit, the implementation unit, and the testing
unit. The communication protocol includes a common com-
munication protocol for communications between the
requirements unit, the implementation unit, and the testing
unitand/or a distributed communication protocol for commu-
nications between the requirements unit, the implementation
unit, and the testing unit.

The method continues at step 82 where the computing
entity generates, in accordance with the system communica-
tion protocol, application code based on the application
requirements, the parameters, and feedback. The method con-
tinues at step 84 where the computing entity tests the appli-
cation code based on the application requirements and the
parameters to produce the feedback. The feedback is output-
ted in accordance with the system communication protocol.

FIG. 11 is a logic diagram of another embodiment of a
method that may be executed by a computing entity and
further discusses the generating of the application require-
ments in step 80 of FIG. 10. This method begins at step 90
where the computing entity generates the application require-
ments based on the inputted requirements and verification
feedback. The method continues at step 92 where the com-
puting entity verifies the generating of the application
requirements is consistent with valid system states and cor-
rectness criteria to produce one or more verification results.
The method continues at step 94 where the computing entity
compares the one or more verification results with one or
more verification thresholds to produce the verification feed-
back.

FIG. 12 is a logic diagram of another embodiment of a
method that may be executed by a computing entity and
further discusses the generating of the application code in
step 82 of FIG. 10. This method begins at step 96 where the
computing entity, for one or more of the application require-
ments and in accordance with one or more of the parameters,
selects one or more implementation tools in accordance with
a current generating of the application code to produce a
selected implementation tool set. The method continues at
step 98 where the computing entity iteratively or incremen-
tally applies the selected implementation tool set. In this step,
for each iteratively or incrementally application of the
selected implementation tool set, the computing entity may
utilize a result of a previous application of the selected imple-
mentation tool set to generate a new intermediate result of the
current implementation of the application code.



US 9,063,673 B2

15

The method continues at step 100 where the computing
entity generates a current implementation of the application
code based on corresponding feedback of the feedback. The
method continues at step 102 where the computing entity
determines whether the current implementation is complete
(e.g., at a desired level of correctness based on the feedback).
If so, the method continues at step 104 where the computing
entity determines whether the current implementation is the
final implementation of developing the application code. If
yes, the method is complete.

If the current implementation is not complete, the method
repeats at step 96 where another tool and/or the same tool(s)
may be used. If the current implementation is complete and
the application code is not finished, the method continues at
step 106 where the computing entity goes to the next imple-
mentation and repeats the process for the next implementa-
tion.

FIG. 13 is a logic diagram of another embodiment of a
method that may be executed by a computing entity and
further discusses the testing of the application code in step 84
of FIG. 10. The method begins at step 108 where the com-
puting entity generates one or more test cases for a current
implementation of the application code based on one or more
corresponding application requirements of the application
requirements and one or more corresponding parameters of
the parameters. The method continues at step 110 where the
computing entity, for an artifact of the current implementa-
tion of the application code being tested, converts the one or
more test cases into an abstract test case set corresponding to
a current level of implementation of the current implementa-
tion of the application code;

The method continues at step 112 where the computing
entity stimulates the current implementation of the applica-
tion code based on the abstract test case set to produce a
developing application code response. The method continues
at step 114 where the computing entity compares the devel-
oping application code response with a desired response of
the one or more test cases. The method continues at step 116
where the computing entity generates the feedback based on
the comparing of the developing application code response
with the desired response.

The computing entity may compare the developing appli-
cation code response with the desired response by determin-
ing a behavior deviation of the developing application code
response for the desired response. The computing entity then
generates the feedback based on the behavior deviation. The
computing entity provides the feedback to the implementa-
tion unit when the behavior deviation is caused by an imple-
mentation error and provides it to the requirement unit when
the behavior deviation is caused by an application require-
ment error.

FIG. 14 is a logic diagram of another embodiment of a
method that may be executed by a computing entity. The
method begins at step 120 where the computing entity gen-
erates a plurality of application system state transitions from
inputted requirements and parameters. The method continues
at step 122 where the computing entity generates a current
implementation of generating application code. To do this,
the computing entity enters a loop that begins at step 128
where the computing entity generates a current intermediate
result based on a previous implementation of generating the
application code and in accordance with current application
code development factors, which includes at least one of: one
ormore of the plurality of application system state transitions,
one or more of the parameters, and application of one or more
implementation tools that have been selected for the current
implementation.

10

40

45

55

16

The loop continues at step 130 where the computing entity
generates at least one test case based on the one or more of the
plurality of application system state transitions. The loop
continues at step 132 where the computing entity tests the
current intermediate result in accordance with the at least one
test case. Hach of the current and previous intermediate
results includes a state table, pseudo code, an activity dia-
gram, a state machine diagram, a state/event matrix, a struc-
ture diagram, a business process diagram, a model, a model-
ing language diagram, and/or code in a particular
programming language.

The loop continues at step 134 where the computing entity
determines whether the test was favorable (e.g., the current
implementation result produces a behavior that was substan-
tially similar to an expected, or desired, behavior). If the
testing was favorable, the computing entity exits the loop.

When the testing is unfavorable, the loop continues at step
136 where the computing entity modifies the application code
development factors. For example, the computing entity may
modify (e.g., change, delete, re-use) one or more of the plu-
rality of application system state transitions, one or more of
the parameters, and/or one or more implementation tools to
produce modified current application code development fac-
tors. As a more specific example, the modified current appli-
cation code development includes selecting one or more new
implementation tools for application in generating the current
intermediate result and/or changing the one or more applica-
tion system state transitions to produce a changed application
system state transition set. The loop then repeats at step 128
using the modified application code development factors.

Upon exiting the loop, the method continues at step 124
where the computing entity determines whether the current
implementation is a final implementation of the application
code. When the current implementation is not the final imple-
mentation of the application code, the method continues at
step 126 where the computing entity repeats the loop for a
next current implementation of generating the application
code. When the current implementation is the final imple-
mentation of the application code, the computing entity out-
puts the application code and the method is complete.

FIG. 15 is a logic diagram of another embodiment of the
loop of FIG. 14 that may be executed by a computing entity
for an architecture level design (ALD) phase. The loop begins
at step 128 where the computing entity generates a current
ALD intermediate result based on a previous implementation
of generating the application code and in accordance with
ALD current application code development factors, which
includes at least one of: one or more of the plurality of appli-
cation system state transitions, one or more of the parameters,
and application of one or more implementation tools that have
been selected for the current implementation.

The loop continues at step 130 where the computing entity
generates at least one ALD test case based on the one or more
of the plurality of application system state transitions. The
loop continues at step 132 where the computing entity tests
the current ALD intermediate result in accordance with the at
least one ALD test case. The loop continues at step 134 where
the computing entity determines whether the test was favor-
able (e.g., the current implementation result produces a
behavior that was substantially similar to an expected, or
desired, behavior). If the testing was favorable, the computing
entity exits the loop.

When the testing is unfavorable, the loop continues at step
136 where the computing entity modifies the ALD applica-
tion code development factors. For example, the computing
entity may modify (e.g., change, delete, re-use) one or more
of' the plurality of application system state transitions, one or



US 9,063,673 B2

17

more of the parameters, and/or one or more implementation
tools to produce modified current application code develop-
ment factors.

FIG. 16 is a logic diagram of another embodiment of the
loop of FIG. 14 that may be executed by a computing entity
for a high level design (HLD) phase. The loop begins at step
128 where the computing entity generates a current HL.D
intermediate result based on a previous implementation of
generating the application code and in accordance with HL.D
current application code development factors, which includes
at least one of: one or more of the plurality of application
system state transitions, one or more of the parameters, and
application of one or more implementation tools that have
been selected for the current implementation.

The loop continues at step 130 where the computing entity
generates at least one HLD test case based on the one or more
of the plurality of application system state transitions. The
loop continues at step 132 where the computing entity tests
the current HLD intermediate result in accordance with the at
least one HLD test case. The loop continues at step 134 where
the computing entity determines whether the test was favor-
able (e.g., the current implementation result produces a
behavior that was substantially similar to an expected, or
desired, behavior). If the testing was favorable, the computing
entity exits the loop.

When the testing is unfavorable, the loop continues at step
136 where the computing entity modifies the HLD current
application code development factors. For example, the com-
puting entity may modity (e.g., change, delete, re-use) one or
more of the plurality of application system state transitions,
one or more of the parameters, and/or one or more implemen-
tation tools to produce modified current application code
development factors.

FIG. 17 is a logic diagram of another embodiment of the
loop of FIG. 14 that may be executed by a computing entity
for a low level design (LLD) phase. The loop begins at step
128 where the computing entity generates a current LLD
intermediate result based on a previous implementation of
generating the application code and in accordance with LL.D
current application code development factors, which includes
at least one of: one or more of the plurality of application
system state transitions, one or more of the parameters, and
application of one or more implementation tools that have
been selected for the current implementation.

The loop continues at step 130 where the computing entity
generates at least one LLD test case based on the one or more
of the plurality of application system state transitions. The
loop continues at step 132 where the computing entity tests
the current LLD intermediate result in accordance with the at
least one LLD test case. The loop continues at step 134 where
the computing entity determines whether the test was favor-
able (e.g., the current implementation result produces a
behavior that was substantially similar to an expected, or
desired, behavior). If the testing was favorable, the computing
entity exits the loop.

When the testing is unfavorable, the loop continues at step
136 where the computing entity modifies the LLD application
code development factors. For example, the computing entity
may modify (e.g., change, delete, re-use) one or more of the
plurality of application system state transitions, one or more
of'the parameters, and/or one or more implementation tools to
produce modified current application code development fac-
tors.

FIG. 18 is a logic diagram of another embodiment of the
loop of FIG. 14 that may be executed by a computing entity
for a code level design (CODE) phase. The loop begins at step
128 where the computing entity generates a current CODE

10

15

20

25

30

35

40

45

50

55

60

65

18

intermediate result based on a previous implementation of
generating the application code and in accordance with
CODE current application code development factors, which
includes at least one of: one or more of the plurality of appli-
cation system state transitions, one or more of the parameters,
and application of one or more implementation tools that have
been selected for the current implementation.

The loop continues at step 130 where the computing entity
generates at least one CODE test case based on the one or
more of the plurality of application system state transitions.
The loop continues at step 132 where the computing entity
tests the current CODE intermediate result in accordance
with the at least one CODE test case. The loop continues at
step 134 where the computing entity determines whether the
test was favorable (e.g., the current implementation result
produces a behavior that was substantially similar to an
expected, or desired, behavior). If the testing was favorable,
the computing entity exits the loop.

When the testing is unfavorable, the loop continues at step
136 where the computing entity modifies the CODE applica-
tion code development factors. For example, the computing
entity may modify (e.g., change, delete, re-use) one or more
of' the plurality of application system state transitions, one or
more of the parameters, and/or one or more implementation
tools to produce modified current application code develop-
ment factors.

FIG. 19 is a logic diagram of another embodiment of a
method that may be executed by a system. The method begins
at step 140 where the system generates a plurality of require-
ments artifacts based on a component use case input require-
ment artifact, a scenario input requirement artifact, and a
correctness criteria input requirement artifact. The method
continues at step 142 where the system generates a plurality
of architecture level artifacts based on at least some of the
plurality of requirements artifacts and the component use
case input requirement artifact. For example, the system gen-
erates one or more structure models and/or one or more test
models as architecture level artifacts.

The method continues at step 144 where the system gen-
erates a plurality of high-level design (HLD) artifacts based
on at least some of the plurality of architecture level artifacts,
atleast a second some of the plurality of requirement artifacts,
non-functional input requirements, and protocol document
input requirements. For example, the system generates one or
more architecture models, one or more structure models, one
or more state models, one or more sanity test models, and/or
one or more protocol specification models as the HLD arti-
facts.

The method continues at step 146 where the system gen-
erates a plurality of low-level design (LLD) artifacts based on
at least a second some of the plurality of architecture level
artifacts, at least some of the plurality of HLD artifacts,
behavior definition input requirement artifacts, and platform
document input requirement artifacts. For example, the sys-
tem generates one or more structure models, one or more state
models, one or more behavior models, one or more platform
models, and/or one or more protocol test models as the LL.D
artifacts.

The method continues at step 148 where the system gen-
erates a plurality of code artifacts based on at least some of the
plurality of LLD artifacts, at least a second some of the
plurality of HLD artifacts, and at least a third some of the
plurality of requirement artifacts, the behavior definition
input requirement artifacts, and the platform document input
requirement artifacts wherein at least one of the plurality of
code artifacts includes application code. For example, the
system generates one or more user code models, one or more



US 9,063,673 B2

19

user application code, one or more model code, one or more
platform code, one or more protocol code, and/or one or more
platform test models as the code artifacts.

FIG. 20 is a schematic block diagram of an embodiment of
arequirements unit 12 that includes one or more input/output
(I0) modules 190, a processing module 192, and memory
194. The processing module 192 may be a single processing
device or multiple processing devices as previously defined.
The 10 module(s) 190 provide connectivity to another com-
puting entity, to a LAN, and/or to a WAN. One or more of the
10 modules receives the inputted requirements 18 and/or
transmits the application requirements 20. Note that the
requirements unit 12 may be incorporated in a computing
entity, which may be a stand-alone computer, may be a por-
tion of a computer (e.g., a computer includes a plurality of
computing entities), and/or may be a plurality of computers.
Further note that a computer may be discrete device and/or be
a cloud computing device. Still further note that the require-
ments unit 12 performs one or more of the methods illustrated
in FIGS. 19, and 25-30.

FIG. 21 is a logic diagram of an embodiment of a method
that may be executed by a requirements unit 12. The method
begins at step 200 where the requirements unit receives input-
ted requirements and parameters. The inputted requirements
may be created from received client requirements and may
include a conditional logic statement(s), a state table(s), and/
or a message sequence chart(s). The parameters include an
application system behavioral constraint(s), an application
system correctness condition(s), an application system plat-
form(s), a behavior definition(s), and/or a data definition(s).

The method continues at step 202 where the requirements
unit generates application requirements based on the inputted
requirements, the parameters, and verification feedback. For
an application requirement(s), the method continues at step
208 where the requirements unit determines whether the gen-
erating of the application requirement(s) is consistent with
valid system states and correctness criteria to produce a veri-
fication result(s). For the application requirement(s), the
method continues at step 210, where the requirements unit
compares the verification result(s) with one or more verifica-
tion thresholds to produce the verification feedback.

When the verification result(s) compares favorably with
the verification threshold(s) (e.g., at a desired level complete-
ness, consistency, and/or safety), the verification feedback
indicates that the application requirement(s) is at the desired
level of completeness, consistency, and/or safety. When the
verification result(s) compares unfavorably with the verifica-
tion threshold(s), the verification feedback indicates an error
and may further specify the nature of the error (e.g., not at the
desired level of completeness, consistency, or safety).

The method continues at step 204 where the processing
module determines whether the last requirement(s) have been
processed. If yes, the method is complete. If not, the method
continues at step 206 where the processing module goes to the
next requirement(s) and repeats the method at step 202 for the
next requirement(s).

FIG. 22 is a schematic block diagram of another embodi-
ment of a requirements unit 12 that includes a requirements
conversion module and a verification module. The require-
ments conversion module receives the inputted requirements
18 in accordance with the system communication protocol.
For example, the inputted requirements 18 may be formatted
as logical conditions, state tables, flow charts, and/or message
sequence charts (MSCs).

In general, the requirements conversion module converts
the inputted requirements 18, based on verification feedback,
into the application requirements 20 that are useable by the

20

25

30

40

45

55

20

implementation module 14 and the test module 16. As the
requirements conversion module converts the inputted
requirements 18 into the application requirements 20, the
verification module 23 verifies the conversion using one or
more verification tools (e.g., state space exploration tool(s),
model checking tool(s), state reduction tool(s), a theorem
proofing tool(s), and/or state abstraction tool(s)) to produce
verification results.

The analysis module 23 compares the verification results
with verification threshold(s) to produce the verification feed-
back. For each application requirement, an objective of the
verification module 23 and the analysis module 25 is to ensure
with a relatively high probability (e.g., at least greater than
90%) that, for every non-terminal state, there is a way to
continue (i.e., no live or dead lock conditions). Another objec-
tive of the verification module 23 and the analysis module 25
is to ensure with a relatively high probability that, for each
valid state, there are one or more known elements capable of
performing the functional requirements of the state (i.e.,
domain specific application verification).

As shown, the application requirements 20 include a plu-
rality of application system state transitions (ASST). Each
ASST includes one or more pre-conditions, one or more
actions, and one or more post-conditions. An ASST may
define an independent operation (i.e., the pre-condition(s) is
not dependent on the post-condition of another basic proto-
col) or a dependent operation (i.e., the pre-condition(s) is/are
dependent on the post-condition of one or more other basic
protocols).

A feature of the requirements unit 12 is the interactive
operation of the requirements conversion module 21, the
verification module 23, and the analysis module 25. For
example, the verification module 23 and the analysis module
25 verify the application requirements as the requirements
module 21 is generating them. As a more specific example,
the verification module 23 and the analysis module 25 verify
the operation of an ASST as the requirements conversion
module 21 creates it and further verify its independency and/
ordependency with respect to other ASSTs. Ifthe verification
module 23 and analysis module 25 determine an error, the
analysis module 25 provides feedback to the requirements
module 21, which it uses to modify the generation of an ASST
and/or to report the feedback to a system operator.

FIG. 23 is a logic diagram of an embodiment of a method
that may be executed by a requirements unit 12 for generating
one or more application system state transitions (ASST). The
method begins by entering a loop. The loop begins at step 220
where the requirements unit generates the one or more ASSTs
based on the inputted requirements, the parameters and/or a
previously generated one or more ASSTs. The method con-
tinues at step 222 where the requirements unit receives veri-
fication feedback regarding the generation of the one or more
ASSTs.

The method continues at step 224 where the requirements
unit determines whether the one or more ASSTs are at a
desired level of completeness, consistency, and/or safety
based on the verification feedback. The verification feedback
is created as shown in steps 227-229. At step 227, the require-
ments unit selects one or more verification tools to produce a
selected verification tool set. A verification tool may be a
theorem proofing tool, a model checking tool, a state space
exploration tool, a state abstraction tool, a state reduction
tool, and/or a combination thereof.

The selection of a verification tool may be done in a variety
of ways. For example, the requirements unit may select the
one or more verification tools based on the inputted require-
ments, previously generated ASST of' the plurality of ASST, a



US 9,063,673 B2

21

number of available application system state transitions, a
number of previous conversion/verification iterations, verifi-
cation tools previously used, previous verification feedback,
current verification feedback, a predetermination, a lookup, a
command, and/or available verification tools.

As another example, the requirements unit may select the
one or more verification tools by consulting an expert system
that has captured verification knowledge. As yet another
example, the requirements unit may select the one or more
verification tools by executing a predetermined verification
tool selection algorithm. As a further example, the require-
ments unit may select the one or more verification tools by
based on evolutionary programming principles. As a still
further example, the requirements unit may select the one or
more verification tools by an artificial-intelligence-based
planning system.

At step 228, the requirements unit applies the selected
verification tool set on the one or more ofthe ASST to produce
an ASST verification result. The application of the selected
verification tool set may be done in a variety of ways. For
example, the requirements unit may apply the selected veri-
fication tool set in a concrete manner (e.g., consider system
variables to have concrete values). As another example, the
requirements unit may apply the selected verification tool set
in a symbolic manner (e.g., consider system variables to have
symbolic values). As yet another example, the requirements
unit may apply the selected verification tool set in a sequential
manner (e.g., apply one verification tool at a time). As a
further example, the requirements unit may apply the selected
verification tool set in a parallel manner (e.g., apply a plural-
ity of verification tools at substantially the same time). As yet
a further example, the requirements unit may apply the
selected verification tool set in a backward manner (e.g.,
begin from a desired condition and/or undesired condition
and attempt to determine whether an initial condition can be
established). As a still further example, the requirements unit
may apply the selected verification tool set in a forward
manner (e.g., begin from an initial state of the system and
attempt to determine whether a desired condition(s) can be
established or whether an undesired condition(s) can be
established).

At step 229, the requirements unit compares the ASST
verification result with a corresponding verification
threshold(s) to produce the verification feedback for this
ASST(s). When the ASST(s) are at the desired level of com-
pleteness, the requirements unit exits the loop.

When the ASSTs are not at the desired level of complete-
ness, the loop continues at step 226 where the requirements
unit updates generating the ASST(s) based on the verification
feedback and repeats the loop. The requirements unit may
update the generating of the ASST(s) in a variety of ways. For
example, the requirements unit may change the generating of
the ASST(s) (e.g., select a different verification tool, change
an application requirement, etc.). As another example, the
requirements unit may add an application system state tran-
sitionto the ASSTs. As yetanother example, the requirements
unit may remove an ASST from the ASSTs.

FIG. 24 is a schematic block diagram of an embodiment of
an implementation unit 14 that includes one or more input/
output (I0) modules 280, a processing module 282, and
memory 284. The processing module 282 may be a single
processing device or multiple processing devices as previ-
ously defined. The 10 module(s) 280 provide connectivity to
another computing entity, to a LAN, and/or to a WAN. One or
more of the IO modules receives the application requirements
20 and parameters 24 and outputs the application code 26.

10

15

20

25

30

35

40

45

50

55

60

65

22

Note that the implementation unit 14 may be incorporated in
a computing entity, which may be a stand-alone computer,
may be a portion of a computer (e.g., a computer includes a
plurality of computing entities), and/or may be a plurality of
computers. Further note that a computer may be discrete
device and/or be a cloud computing device.

FIG. 25 is a logic diagram of an embodiment of a method
that may be executed by an implementation unit 14. The
method begins at step 290, where the implementation unit
receives application requirements, parameters, and feedback.
The application requirements include a plurality of applica-
tion system state transitions and the parameters include an
application system behavioral constraint, an application sys-
tem correctness condition, an application system platform, a
behavior definition, and/or a data definition. The feedback is
from the testing unit and indicates a level of completeness,
correctness, and/or safety compliance of the developing
application code.

The method continues at step 292 where the implementa-
tion unit generates application code based on the application
requirements, the parameters, and the feedback. In an
example, the implementation unit generates the application
code in process phases such as an architecture level design
process phase, a high-level design (HLD) process phase, a
low-level design (LLD) process phase, and a code develop-
ment process phase.

For a current implementation of an incremental phase (e.g.,
architecture, HLD, LLD, code, etc.) of generating the appli-
cation code, the method continues with the implementation
unit entering a loop. The loop begins at step 298 where the
implementation unit selects an implementation tool from a
plurality of implementation tools in accordance with imple-
mentation constraints and a previous implementation result.
The implementation tool may be a specific use implementa-
tion tool and/or a general use implementation tool. A specific
use implementation tool may be applied to the current imple-
mentation of generating the application code for a particular
targeted processor and/or other constraint parameters and a
general use implementation tool may be applied to implement
the current implementation of generating the application code
in accordance with non-targeted processor common comput-
ing principles.

A specific or general implementation tool may be an arti-
ficial intelligence (AI) based planning system implementa-
tion tool, a predetermined algorithm tool, a consultation sys-
tem tool, and/or an evolutionary programming principles
tool. Examples of specific and/or general implementation
tools include, but are not limited to, a compiler, a program
rewriting system tool, a term rewriting system tool, a tree
rewriting system tool, a graph transformation system tool, a
model transformation system tool, a macro expansion system
tool, an aspect-oriented development system tool, a source-
to-source translator, a data-type refinement system tool, a
program slicing system tool, a program pre-processor, a pro-
gram comprehension system tool, a program morphing sys-
tem tool, an algebraic manipulation system tool, and an opti-
mizations system tool.

The implementation unit may select the implementation
tool in a variety of ways. For example, the implementation
unit selects the implementation for at least one repeating of
the loop (e.g., use the same implementation tool(s) for a
repeating of the loop). As another example, the implementa-
tion unit selects the implementation tool based on the appli-
cation requirements, the previous implementation result, the
current feedback, previously used implementation tools, pre-
vious feedback regarding the current implementation of the
incremental phase of generating the application code, a num-



US 9,063,673 B2

23

ber of iterations for which the implementation tool has been
used, and/or an availability of implementation tools. As yet
another example, the implementation unit selects the imple-
mentation tool by consulting an expert system that has cap-
tured programming knowledge. As a further example, the
implementation unit selects the implementation tool by
executing a predetermined implementation tool selection
algorithm. As a still further example, the implementation unit
selects the implementation tool by based on evolutionary
programming principles. As an even further example, the
implementation unit selects the implementation tool by an
artificial-intelligence-based planning system.

The loop continues at step 300 where the implementation
unit generates a current implementation result based on an
application of the implementation tool, one or more of the
application requirements, one or more of the parameters,
and/or the previous implementation. Each of the previous and
current implementation results may be a message diagram, a
state machine diagram, a state table, a state/event matrix,
pseudo code, a structure diagram, a model, a diagram of a
modeling language, code in a programming language, an
activity diagram, and/or a business process diagram.

The loop continues at step 302 where the implementation
unit receives current feedback regarding the current imple-
mentation result. The loop continues at step 304 where the
implementation unit determines whether the current imple-
mentation result is at a desired level of correctness (e.g., is
error free, accurately represents the corresponding applica-
tion requirements, etc.) based on the current feedback. If yes,
the implementation unit exits the loop for the current imple-
mentation.

When the current implementation result is not at the
desired level of correctness, the implementation unit repeats
the loop based on the current feedback. For example, the
implementation reverts to a previous set (e.g., implementa-
tion tools, application requirements, and/or parameters) of
generating the current implementation of the incremental
phase of generating the application code. As another
example, the implementation unit changes the current imple-
mentation of the incremental phase of generating the appli-
cation code (utilizes one or more different implementation
tools, adds/deletes/alters one or more of the application
requirements, and/or adds/deletes/alters one or more of the
parameters). As a further example, the implementation unit
revises one or more of the application requirements.

FIG. 26 is a schematic block diagram of another embodi-
ment of an implementation unit 14 that includes an input
module 280-1, an output module 280-O, memory 284, and a
processing module 282. The input module 280-I is operable
to receive application requirements 20, parameters 24, and
feedback from the testing unit and provide them to the pro-
cessing module 282. The output module 280-O is operable to
output the various implementations of the application code.

The processing module 282 is operable to implement the
application code in process phases: an architecture level
design phase 310, a high-level design (HLD) phase 312, a
low-level design (LLD) phase 314, and/or a code develop-
ment phase 316. During the architecture level design phase,
the processing module 282 produces architecture artifacts
318 (e.g., one or more model tests and one or more structure
model) based on one or more of the application requirements
20, the parameters 24, and architecture phase feedback 326.
The testing unit 16 generates the architecture phase feedback
326 by testing the results corresponding to the development
of'the architecture artifacts using architecture level test cases.

During the high-level design (HLD) phase, the processing
module produces HLD artifacts 320 based on one or more of

20

30

40

45

50

24

the architecture artifacts 318, the application requirements
20, the parameters 24, and HLLD phase feedback 328. The
HLD artifacts 320 include one or more structure models
and/or one or more state models. The testing unit 16 generates
the HLLD feedback 328 by testing the results corresponding to
the development of the HLD artifacts using HLD level test
cases.

During the low-level design (LLD) phase, the processing
module produces LLD artifacts 322 based on one or more of
the architecture artifacts 318, the HLD artifacts 320, the
application requirements 20, the parameters 20, and LLD
phase feedback 330. The LLD artifacts 322 include one or
more structure models, one or more state models, one or more
behavior models, and/or one or more protocol tests. The test-
ing unit 16 generates the LLD feedback 330 by testing the
results corresponding to the development of the LLD artifacts
using LLD level test cases.

During the code development phase, the processing mod-
ule 282 produces code artifacts 324 based on one or more of:
the HLD artifacts 320, the LLD artifacts 322, the application
requirements 20, the parameters 24, and code development
phase feedback 332. The code artifacts 324 include one or
more user codes, one or more application codes, and/or one or
more integration tests. The testing unit 16 generates the code
feedback 332 by testing the results corresponding to the
development of the code artifacts using code level test cases.

FIG. 27 is a schematic block diagram of an embodiment of
a testing unit 16 that includes one or more input/output (10)
modules 450, a processing module 452, and memory 454.
The processing module 452 may be a single processing
device or multiple processing devices as previously defined.
The 10 module(s) 450 provide connectivity to another com-
puting entity, to a LAN, and/or to a WAN. One or more of the
IO modules receives the application requirements 20, the
parameters 24, and the application code 26 and outputs the
test feedback 32. Note that the testing unit 16 may be incor-
porated in a computing entity, which may be a stand-alone
computer, may be a portion of a computer (e.g., a computer
includes a plurality of computing entities), and/or may be a
plurality of computers. Further note that a computer may be
discrete device and/or be a cloud computing device.

FIG. 28 is a logic diagram of an embodiment of a method
that may be executed by a testing unit 16. The method begins
at step 360 where the testing unit receives application require-
ments. The method continues at step 362 where the testing
unit receives a plurality of implementation results of applica-
tion code as the application code is being developed. The
receiving of application requirements and implementation
results may be done in an iterative and repetitive manner,
which corresponds to the iterative and repetitive manner of
developing the application code.

The method continues at step 364 where the testing unit
tests the implementation results of the application code as the
application code is being developed based on the application
requirements. For a current implementation result, the
method continues at step 370 where the testing unit generates
at least one test case based on one or more of the application
requirements. In general, a test case includes one or more
input stimuli and one or more expected output results corre-
sponding to the input stimuli.

The generation of the test case may include converting the
test case into a level of abstraction corresponding to the cur-
rent implementation result to produce at least one converted
test case. The level of abstraction corresponding to the current
implementation includes an abstraction corresponding to an
architecture level design process phase, a high-level design
(HLD) process phase, a low-level design (LLD) process



US 9,063,673 B2

25

phase, and/or a code development process phase. The genera-
tion of the test case may further include converting the con-
verted test case into a suitable format to exercise the applica-
tion code to produce the at least one test case.

The method continues at step 372 where the testing unit
stimulates the current implementation result based on the test
case to produce a current application system response. The
method continues at step 374 where the testing unit compares
observed behavior of the current application system response
with prescribed behavior of the test case. The method contin-
ues at step 376 where the testing unit generates feedback (e.g.,
code implementation feedback that indicates whether the cur-
rent implementation result is at a desired level of corrections
and application requirement feedback) based on the compar-
ing of the observed behavior of the current application system
response with the prescribed behavior of the at least one test
case. This may include generating a description of deviations
of the observed behavior of the current application system
response from the prescribed behavior of the at least one test
case and generating the feedback based on the description.

FIG. 29 is a logic diagram of another embodiment of a
method that may be executed by a testing unit for testing
developing application code at the architecture level design
(ALD) process phase. The method begins at step 370 where
the testing unit generates at least one ALD test case (which
includes one or more model test artifacts) based on one or
more of the application requirements. The method continues
at step 372 where the testing unit stimulates the current ALD
implementation result based on the ALD test case to produce
acurrent ALD application system response. The method con-
tinues at step 374 where the testing unit compares observed
behavior of the current ALD application system response
with prescribed behavior of the ALD test case. The method
continues at step 376 where the testing unit generates ALD
feedback based on the comparing of the observed behavior of
the current ALD application system response with the pre-
scribed behavior of the at least one ALD test case.

FIG. 30 is a logic diagram of another embodiment of a
method that may be executed by a testing unit for testing
developing application code at the high level design (HLD)
process phase. The method begins at step 370 where the
testing unit generates at least one HLD test case (which
includes one or more sanity test artifacts) based on one or
more of the application requirements. The method continues
at step 372 where the testing unit stimulates the current HL.D
implementation result based on the HL.D test case to produce
acurrent HLD application system response. The method con-
tinues at step 374 where the testing unit compares observed
behavior of the current HLD application system response
with prescribed behavior of the HLD test case. The method
continues at step 376 where the testing unit generates HLD
feedback based on the comparing of the observed behavior of
the current HLD application system response with the pre-
scribed behavior of the at least one HLD test case.

FIG. 31 is a logic diagram of another embodiment of a
method that may be executed by a testing unit for testing
developing application code at the low level design (LLD)
process phase. The method begins at step 370 where the
testing unit generates at least one LLD test case (which
includes one or more protocol test artifacts) based on one or
more of the application requirements. The method continues
at step 372 where the testing unit stimulates the current LL.D
implementation result based on the LLD test case to produce
a current LLD application system response. The method con-
tinues at step 374 where the testing unit compares observed
behavior of the current LLD application system response
with prescribed behavior of the LLD test case. The method

20

25

35

40

45

55

26

continues at step 376 where the testing unit generates LLD
feedback based on the comparing of the observed behavior of
the current LLD application system response with the pre-
scribed behavior of the at least one LLD test case.

FIG. 32 is a logic diagram of another embodiment of a
method that may be executed by a testing unit for testing
developing application code at the code level design (CODE)
process phase. The method begins at step 370 where the
testing unit generates at least one CODE test case (which
includes one or more platform test artifacts) based on one or
more of the application requirements. The method continues
at step 372 where the testing unit stimulates the current
CODE implementation result based on the CODE test case to
produce a current CODE application system response. The
method continues at step 374 where the testing unit compares
observed behavior of the current CODE application system
response with prescribed behavior of the CODE test case. The
method continues at step 376 where the testing unit generates
CODE feedback based on the comparing of the observed
behavior of the current CODE application system response
with the prescribed behavior of the at least one CODE test
case.

FIG. 33 is a diagram of an embodiment of the system 10
(i.e., the requirements unit 12, the implementation unit 14,
and the testing unit 16) overlaid on illustrative process phases
leveraged in a typical system development process. The pro-
cess phases include requirements elicitation, requirements
analysis, architecture level design, high-level design, low-
level design, code development, and system test. Relating the
units of the system 10 to the function levels, the requirements
conversion module 40 of the requirements unit 12 facilitates
the requirements elicitation; the verification module 42 of the
requirements unit 12 facilitates the requirements analysis; the
implementation unit 14 facilitates the architecture level
design, the high-level design, the low-level design, and code
development; and the testing unit 16 facilitates the system
test, as well as any other testing steps applied during the
development process.

Each of'the illustrative phases yields one or more artifacts
during application code development. For instance, require-
ments elicitation may yield artifacts such as nonfunctional
requirements, component use cases, scenarios, correctness
criteria, behavior definitions, platform documents, and/or
data definitions. Requirements analysis may yield artifacts
such as formalized requirements and/or verified requirements
(e.g., application system state transitions (ASST)). The archi-
tecture level design phase may yield artifacts such as model
tests and/or structure models (e.g., composite structure dia-
grams (CSD)). The high-level design phase may yield arti-
facts such as structure models and state models (e.g., com-
posite structure diagrams, state machine diagrams (SM)),
architecture model(s), protocol specification(s), and/or
designtests (e.g., sanity test). The low-level design phase may
yield artifacts such as structure models, state models, &
behavior models (e.g., detailed composite structure diagrams
state machine diagrams, data structure definitions (DD), etc.),
platform model(s), and/or protocol tests. The code develop-
ment phase may yield artifacts such as user code, application
code (e.g., user code, model code, platform code, and/or
protocol code), and/or integration tests.

The system 10 may initially receive requirements as client,
or user, inputs, which are typically in a form familiar to the
client (e.g., utilizing client specific languages or client spe-
cific notations) and may not be in an industry standard format.
For example, client inputted requirements may be in a form
including, but not limited to, narratives, drawings, process



US 9,063,673 B2

27

flow diagrams, flowcharts, communication protocol docu-
ments, internal standards, stylized natural language, etc.

Alternatively, the system may obtain (e.g., receive, gener-
ate, retrieve, etc.) inputted requirements in a desired format,
(e.g., as message sequence charts (MSCs), as flow charts, as
state tables, as conditionals, etc.) and/or convert client input-
ted requirements into the desired format of the inputted
requirements. The inputted requirements include, but are not
limited, to non-functional requirements (e.g., statements
about the application system such as performance levels,
availability, reliability, etc.); component use cases (e.g., defi-
nitions of the interaction between a component of the desired
application code and a user that is outside of the application
system to achieve a specific goal); correctness criteria (e.g.,
the application requirements should not create a safety vio-
lation, etc.); scenarios (e.g., a narrative description of (an)
interaction(s) between one or more users (external to the
application system and/or within the application system) and
the application system (i.e., the desired application code)
during normal or abnormal use of the application system);
behavior definitions (e.g., high-level descriptions of how the
application system is to meet an objective, produce a desired
result, process a given input, etc.); platform documentation
(e.g., descriptions of one or more of the underlying hardware
and target environment on which the application system shall
be operational, the software framework, operating system,
programming language, graphical user interface, and runtime
libraries, etc.) and/or data definitions (i.e., protocol docu-
ment) (e.g., specifications of the messages and/or commands
that will be sent to the application system or which will be
emitted by the application system).

During implementation, the system uses the application
requirements to generate the application system architecture
as well as the application system behavior descriptions. It
further generates platform aspects to accommodate the physi-
cal nature of the platform upon which the application system
shall be operational. The system further generates application
code. For all of these artifacts, the system produces tests from
the application requirements, which establish, when
executed, whether the given artifact properly realizes the
inputted user requirements.

The client requirements may also include additional func-
tional requirements, performance requirements, architectural
requirements, etc., and may be received from the client in one
or more forms (e.g., prose table, operational tables, timing
diagrams, architecture constraints, logical constructs, state
tables, message sequence charts, etc.), examples of which are
illustrated in FIGS. 41-50.

FIG. 34 highlights the requirements elicitation phase of
FIG. 33. In this phase, the requirements unit 12 is active to
establish inputted requirements from user requirements. In
particular, the system 10 receives user requirements as client,
or user, inputs, which are typically in a form familiar to the
client (e.g., utilizing client specific languages or client spe-
cific notations) and may not be in an industry standard format,
which would then be converted into an industry standard
form. Alternatively, the system may obtain (e.g., receive,
generate, retrieve, etc.) inputted requirements in a desired
format, (e.g., as message sequence charts (MSCs), as flow
charts, as state tables, as conditionals, etc.). The inputted
requirements include, but are not limited, to non-functional
requirements, component use cases, correctness criteria, sce-
narios, behavior definitions, platform documentation, and/or
data definitions.

FIG. 35 highlights the requirements analysis phase of FIG.
33. Inthis phase, the requirements unit 12 is active to establish
application requirements (e.g., application system state tran-

10

15

20

25

30

40

45

28

sitions) as verified requirement artifacts. To do so, the require-
ments unit 12 processes the component use cases and sce-
narios to generate formalized requirements (e.g., outputs of
the requirements conversion module 21). The requirements
unit 12 then verifies the formalized requirements (e.g., via the
verification module 23 and the analysis module 25) to pro-
duce the verified requirements (i.e., the application require-
ments).

FIG. 36 highlights the architecture level design phase of
FIG. 33. In this phase, the requirements unit 12, the imple-
mentation unit 14, and the testing unit 16 are active. The
implementation unit 14 generates architecture level structure
models from the component use cases of the inputted require-
ments. The testing unit 16 generates corresponding model
tests based on the verified requirements (e.g., the application
requirements).

FIG. 37 highlights the high level design (HLD) phase of
FIG. 33. In this phase, the requirements unit 12, the imple-
mentation unit 14, and the testing unit 16 are active. The
implementation unit 14 generates an architecture model from
the nonfunctional requirements of the inputted requirements
and the architecture level structure models. The implementa-
tion unit 14 also generates HLD structure models from the
architecture level structure models. The implementation unit
14 further generates HLLD state models from the architecture
level model tests and the verified requirements (e.g., the
application requirements). The implementation unit 14 still
further generates platform models from the platform docu-
ments. The testing unit 16 generates corresponding sanity
tests based on the verified requirements.

FIG. 38 highlights the low level design (LLD) phase of
FIG. 33. In this phase, the requirements unit 12, the imple-
mentation unit 14, and the testing unit 16 are active. The
implementation unit 14 generates LD structure models from
the architecture model. The implementation unit 14 also gen-
erates LLD structure models from the HLD structure models.
The implementation unit 14 further generates behavior mod-
els from the behavior definition of the inputted requirements.
The implementation unit 14 still further generates platform
models from the platform documentation of the inputted
requirements. The testing unit 16 generates corresponding
protocol tests based on the protocol specification.

FIG. 39 highlights the code level design (CODE) phase of
FIG. 33. In this phase, the requirements unit 12, the imple-
mentation unit 14, and the testing unit 16 are active. The
implementation unit 14 generates a first type of user code
based on the behavior models, the protocol specifications, the
behavior definitions, and the platform documentation. The
implementation unit 14 also generates a second type of user
code from the first type of user code. The implementation unit
14 further generates model code based on feedback of the
sanity test and one or more of the LLD structure models, the
LLD state models, and one or more of the behavior models.
The implementation unit 14 still further generates platform
code based on the platform models. The implementation unit
14 yet further generates protocol code based on the protocol
specifications and feedback of the protocol test. The testing
unit 16 generates corresponding platform tests based on the
protocol tests and the verified requirements.

FIGS. 40-61 are diagrams of an example of generation
application code from input requirements for a traffic light
control system for a downtown area of a city. The example
begins at FIG. 40, which illustrates a diagram of a street map
of a traffic light control system. The street map illustrates a
system of streets including east/west streets (e.g., 1° street,
274 Street, 3" Street, . . . , nth Street), north/south streets (e.g.,



US 9,063,673 B2

29

Main Street, State Street, etc.), and intersections of the east/
west streets and north/south streets.

The streets support vehicular traffic of private vehicles
(e.g., personal cars and trucks) and commercial vehicles (e.g.,
delivery trucks, 18-wheel trucks, etc.). The timing of trans-
port activity may vary as a function of one or more factors
including but not limited to time of day, work schedules, day
of week, holidays, and/or special scenarios (e.g., emergency
vehicle traffic, concerts, sporting events, etc.). The transport
activity of the plurality of vehicles may be observable as
traffic patterns (e.g., minimum, maximum, mean, median
amounts of vehicles per unit of time at a particular time of day,
on a section of a street, heading in a direction, vehicular
velocity, density of vehicles per unit of distance, etc.).

Some factors may have a more pronounced impact on
traffic patterns. For example, traffic due to a common work-
day schedule may introduce higher volumes of traffic at one
time of day (e.g., morning rush 6 AM-9 AM) in a direction
(e.g., north to south) and along a path from an area where a
high volume of people live to an area where the high volume
of people are employed. In another example, traffic due to a
common workday schedule may introduce higher volumes of
traffic at one time of day (e.g., evening rush 3 PM-6 PM) in a
direction (e.g., south to north) and along a path from an area
where a high volume of people are employed to an area where
the high volume of people live.

In this example of a traffic light control system, typical
client requirements (e.g., from a department of transporta-
tion) may be to develop the traffic light control system to
safely optimize traffic flow based on the factors that affect the
traffic patterns. For example, the client requirements may
include minimizing traffic build up (e.g., density of vehicles
per unit of distance) at one or more intersections due to the
morning rush and/or the evening rush traffic pattern factors.
For example, the goal may be to minimize traffic build up at
and/or around the intersection of Main Street and 2”“ Street,
Main Street and 3’7 Street, State Street and 2" Street, and
State Street and 3"¢ Street due to the morning rush and
evening rush traffic pattern factors.

The client requirements may also include additional func-
tional requirements, performance requirements, architectural
requirements, etc. and may be received from the client in one
or more forms (e.g., prose table, operational tables, timing
diagrams, architecture constraints, logical constructs, state
tables, message sequence charts, etc.), examples of which are
illustrated in FIGS. 41-50.

In this example, the client requirements require the traffic
light control system to control a plurality of traffic lights to
achieve a desired traffic flow pattern. For instance, the traffic
light control system may favor longer green light cycles for
traffic moving in the direction of the morning rush and/or the
evening rush. As a more specific example, the traffic light
control system favors longer green light cycles for traffic
moving in the north to south direction during the morning
rush time period and favors longer green light cycles for
traffic moving in the south to north direction during the
evening rush time period.

The traffic light control system may also coordinate control
of' the plurality of traffic lights at two or more intersections to
further optimize the desired traffic flow pattern. For example,
the traffic light control system may stagger the green lights to
keep vehicles moving. For instance, the traffic light control
system enable green lights at several intersections such that a
vehicle moving at a posted speed limit passes through mul-
tiple intersections without getting stopped by a red light.

FIG. 41 is a diagram of an example of an operational table
that includes one or more operational elements based on a

10

15

20

25

30

35

40

45

50

55

60

65

30

time constraint. An operational element specifies an inputted
requirement for the traffic light control system and may be
tied to a time constraint. For instance, an operational element
may be one or more of, but not limited to, actions, predeter-
minations, priorities, preferences, and/or any other guidance
to comply with a client requirement. In this example, the
traffic light control system is required to exhibit the behavior
indicated by the operational elements in accordance with time
constraints, which may be expressed as day of the week, time
of day, and/or time duration.

As shown in the table, the day of the week may be
expressed as a weekday (e.g., Monday through Friday) or as
a weekend (e.g., Saturday and Sunday). As is also shown in
the table, the time of day may be expressed as early morning
(e.g., 4 AM-6 AM), morning rush (e.g., 6 AM-9 AM), mid-
day (e.g., 9 AM-3 PM), evening rush (3 PM-6 PM), evening (6
PM-11 PM), and/or night (11 PM-4 AM).

As a specific example of an operational element, during the
early morning, mid-day, and evenings of weekdays, the traffic
light control system is required to exhibit the behavior where
the north south traffic is given a dominant priority over the
eastwest traffic (e.g., longer green light cycles for north south
and shorter green light cycles for east west) and where the
north to south and south to north directions have equal prior-
ity. As another example, during weekday morning rush hour,
the traffic light control system is required to exhibit the behav-
ior where the north to south traffic is given a priority over all
other directions. Note that this is consistent with the client
requirement to minimize traffic build up at and/or around the
intersection of Main Street and 2" Street, Main Street and 3"
Street, State Street and 2 Street, and State Street and 3¢
Street due to the morning rush.

As another example, the traffic light control system is
required to exhibit the behavior where the south to north
traffic is given a priority over all other directions for the
weekday evening rush time period. Note that this is consistent
with the client requirement to minimize traffic build up at
and/or around the intersection of Main Street and 2”¢ Street,
Main Street and 3’7 Street, State Street and 2”? Street, and
State Street and 3’7 Street due to evening rush hour traffic.
Other examples of operational elements should be apparent
from the table and may include further examples (not shown)
for special scenarios such as emergency vehicle or sporting
event exceptions.

FIG. 42 is atiming diagram of the morning rush hour traffic
light sequencing in the example traffic light control system.
The timing diagram includes diagrams for Main Street and/or
State Street at each of the east-west streets (e.g., 1° street, 2”7
Street, 37 Street, etc to an nth Street). The individual dia-
grams indicate that (for the north to south traffic on Main
Street and/or State Street) the green cycle is favored over the
red cycle. The diagrams further indicate that the enabling of a
green red cycle from intersection to intersection is staggered
to promote the flow of traffic. For instance, t;_ is the time
period between the initiation of a green light cycle at a first
intersection (e.g., 1% Street) and the initiation of a green light
cycle at the next intersection (e.g., 2"/ Street), where t._;
corresponds to the time period it takes a vehicle being oper-
ated at the posted speed limit to travel from one intersection to
the next. Note that t;_; may be determined uniquely for each
intersection to the next (e.g., from the second intersection to
a third intersection, etc.).

The timing diagrams also indicate that the red cycle from
intersection to intersection is staggered to promote traffic
flow. For instance, Ty j is the time period between the initia-
tion of ared light cycle at one intersection (e.g., 1* Street) and
the initiation of a red light cycle at the next intersection (e.g.,



US 9,063,673 B2

31

2"¢ Street), where T _,, is the time period it takes a vehicle
being operated at the posted speed limit to travel from the first
intersection to the second intersection. Note that T _, may be
determined uniquely for each intersection. Further note that
hysteresis is assumed when a traffic light is transitioning from
red to green.

FIG. 43 is a timing diagram of the evening rush hour traffic
light sequencing in the example traffic light control system.
The timing diagram includes diagrams for Main Street and/or
State Street at each of the east-west streets (e.g., 1° street, 27
Street, 3"/ Street, etc to an nth Street). The individual dia-
grams indicate that (for the south to north traffic on Main
Street and/or State Street) the green cycle is favored over the
red cycle. The diagrams further indicate that the enabling of a
green red cycle from intersection to intersection is staggered
to promote the traffic flow from south to north. For instance,
5. 1s the time period between the initiation of a green light
cycleata first intersection (e.g., n™” Street) and the initiation of
a green light cycle at the next intersection (e.g., n—1 Street),
where t;_ corresponds to the time period it takes a vehicle
being operated at the posted speed limit to travel from one
intersection to the next. Note that t; ; may be determined
uniquely for each intersection to the next (e.g., from the
second intersection to a third intersection, etc.).

The timing diagrams also indicate that the red cycle from
intersection to intersection is staggered to promote traffic
flow from south to north. For instance, Ty _, is the time period
between the initiation of a red light cycle at one intersection
(e.g., nth Street) and the initiation of a red light cycle at the
next intersection (e.g., n—1 Street), where T, 5 is the time
period it takes a vehicle being operated at the posted speed
limit to travel from the first intersection to the second inter-
section. Note that T, , may be determined uniquely for each
intersection. Further note that hysteresis is assumed when a
traffic light is transitioning from red to green.

FIG. 44 is a timing diagram of the early morning, mid-day,
and evening traffic light sequencing in the example traffic
light control system. The timing diagram includes diagrams
for Main Street and/or State Street at each of the east-west
streets (e.g., 1% street, 2”7 Street, 3’ Street, etc to an nth
Street). The individual diagrams indicate that (for the south to
north traffic on Main Street and/or State Street) the green
cycle is favored over the red cycle. The diagrams further
indicate that the enabling of a green red cycle from intersec-
tion to intersection is not staggered to promote equal north-
to-south and south-to-north traffic flow.

FIG. 45 is a table of other requirements of the example
traffic light control system. In general, other requirements for
the system may include physical characteristics (e.g., shape,
size, weight, color, orientation, material composition, etc.),
service life (e.g., time period prior to retirement), reliability
(e.g., error rates, failure rates, mean time to failure rates,
uptime), serviceability (e.g., mean time to repair), functional
operation, performance level, etc.

In this example, the other requirements include battery
backup, centralized control (e.g., vs. autonomous), and/or
weather proof, and other functional operations and/or perfor-
mance levels of the traffic light control system. Other require-
ments may not affect the performance and/or operation of the
system. As shown in this example, the other requirements
include the City Logo on each stoplight. As such, to generate
software from the requirements, the functional requirements
(e.g., performance, operational, etc.) are separated from the
non-performance requirements (e.g., logos).

FIG. 46 is a schematic block diagram of the example traffic
light control system at four intersections. The traffic light
control system includes a central controller and, at each inter-

10

15

20

25

30

35

40

45

50

55

60

65

32

section, an intersection controller and four traffic lights. The
central controller coordinates the overall traffic pattern by
controlling the actions of the plurality of intersection control-
lers. For example, the central controller may instruct one or
more intersection controllers to enable a green light for north
to south traffic and a red light for east-west for time interval
5. 10 accordance with one or more of the traffic patterns
discussed with reference to FIGS. 58-60.

In accordance with control signals from the central con-
troller, an intersection controller controls the traffic light pat-
tern of its four traffic lights. For example, the intersection
controller may instruct the pair of east west traffic light mod-
ules to display a steady red signal and instructs the pair of
north south traffic light modules to display a steady green
signal. In another example, the intersection controller may
instruct the pair of east west traffic light modules to display a
flashing red signal and instructs the pair of north south traffic
light modules to display a flashing yellow signal.

In furtherance of the example traffic light control system,
the present figure provides architectural requirements (e.g., a
central controller and four traffic lights & an intersection
controller per intersection). From the architectural require-
ments, the system determines that it needs to produce soft-
ware for several components; i.e., the traffic light, the inter-
section controller, and the central controller.

FIG. 47 is a diagram of an example of converting client
inputted requirements for the application system into inputted
requirements 18 for the application system. The client input-
ted requirements are typically in a form familiar to the client
(e.g., utilizing client specific languages or client specific nota-
tions), which may not be in an industry standard format. For
example, client inputted requirements may in a form includ-
ing, but not limited to, narratives, drawings, process flow
diagrams, flowcharts, communication protocol documents,
internal standards, stylized natural language, etc.

The system 10 converts, or enables an operator of the
system to convert, the client inputted requirements into the
inputted requirements, which have a desired format. For
example, inputted requirements 18 may in a form including
but not limited to logical constructs (e.g., conditionals), mes-
sage sequence charts (MSC), use case maps (UCM), state
machines or state tables, timing diagrams, etc.

In addition, the system 10 converts, or enables an operator
of the system to convert, the inputted requirements into the
application requirements. The application requirements are
in a form of application system state transitions (ASSTs). In
general, an ASST includes a precondition that describes the
state of the application system before performing the state
transition, a description of the application system state, a
description of the application system behavior during a state
transition, and a post condition that describes the state of the
application system after performing the state transition. A
transition in the application system may be event triggered or
it may be triggered by a continuous change. An ASST also
includes the set of actors ofthe application system involved in
the particular state transition.

FIG. 48 illustrates an if-then-else statement diagram (an
example of conditional logic) for an intersection controller of
the example traffic light control system. The system gener-
ates, or enables generation of, the if-then-else statement dia-
gram based on the client inputted requirements discussed in
one or more of FIGS. 56-61. As shown, the if-then-else logi-
cal illustrates the actions of the intersection controller to
control the traffic lights based on the day of the week and the
time of day. As an example, the intersection controller con-
trols the traffic lights to operate with the north-south direc-
tional lights dominating over the east-west directional lights



US 9,063,673 B2

33

and where the north to south and south to north directions
have equal priority when the time is between 4 AM and 6 AM,
or 9 AM to 3 PM, or 6 PM and 11 PM on any of Monday
through Friday (e.g., weekdays). Other examples should be
self-evident from the diagram.

FIG. 49 is a diagram of a state table for the example traffic
light control system. The system generates, or enables gen-
eration of, the state table based on the client inputted require-
ments discussed in one or more of FIGS. 56-61. As shown, the
state table illustrates the states of an intersection controller,
where a state includes an action (e.g., E-W light & N-S light)
and a time duration for the corresponding action.

In this example, the state table has four sections: the first
corresponds to N-S dominate traffic flow with north and south
traffic flow of equal priority; the second corresponds to N-S
dominate traffic flow with north-to-south traffic flow of
higher priority; the third corresponds to N-S dominate traffic
flow with south-to-north traffic flow of higher priority; and
the fourth to flashing lights. As shown, the first section
includes states 1, 2, 3, and 4; the second section includes
states 5,2, 6, and 4; the third section includes states 7, 2, 8, and
4, and the fourth section includes state 9.

FIG. 50 is a diagram of a message sequence chart (MSC)
for the first four states of the state table of FIG. 49. As shown,
the MSC indicates that the intersection controller sends a red
message to the north south traffic lights and sends, after a
delay, a green message to the east west traffic lights, which
corresponds to state 1 of the state table. The MSC illustrates
that the intersection controller then waits a time duration (T1)
before transitioning to state 2 where it sends a yellow message
to the east west traffic lights.

The MSC further illustrates that the intersection controller
waits time duration T2 before transitioning to state 3, where it
sends a red message to the east west traffic lights and sends,
after some delay, a green message to the north south traffic
lights. As shown in the MSC, the intersection controller waits
time duration T3 before transitioning to state 4, where it sends
a yellow message to the north south traffic lights. The MSC
indicates that the intersection controller waits time duration
T2 before transitioning back to state 1. Note that the MSC
requirements format blends together the operational require-
ments, the timing diagram requirements, the architectural
requirements, the state requirements, and new messaging
between architectural elements requirements.

FIG. 51 is a diagram of the system 10 that includes the
requirements unit 12, the implementation unit 14, and the
testing unit 16. The requirements unit 12 includes the require-
ments conversion module (converting the customer inputted
requirements into the inputted requirements and then convert-
ing the inputted requirements into the application require-
ments), the verification module, and an analysis module.

In an example of operation, the requirements conversion
module generates the application requirements 20 for the
traffic light, the intersection controller, and the central con-
troller from the inputted requirements 18 and parameters 24
based on verification feedback. As previously discussed, the
inputted requirements 18 may include conditionals, state
tables, and/or MSCs, which may be generated from client
inputted requirements. The parameters 24 include one or
more of, but are not limited to, application system behavioral
constraints, application system correctness conditions, an
application system platform (e.g., an operating system, com-
puting engines, a programming language of the application
code), behavior definitions (e.g., operational tables, condi-
tionals, etc.), and/or data definitions (e.g., message and com-
mand descriptions, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

34

The requirements conversion module generates a plurality
of application system state transitions as the application
requirements 20 for the traffic light from the inputted require-
ments 18 and the verification feedback relevant to operation
of the traffic light. The requirements conversion module also
generates application system state transitions for the intersec-
tion controller from the inputted requirements 18 and the
verification feedback relevant to operation of the intersection
controller and generates application system state transitions
for the central controller from the inputted requirements 18
and the verification feedback relevant to operation of the
central controller.

As a further example of operation, the requirements con-
version module produces verified application requirements
20 for each of the traffic light, intersection controller, and the
central controller based on the inputted requirements 18 and
verification module feedback. This is generally an iterative
process where, for example, application requirements of
iteration “n” are used to generate application requirements of
iteration “n+1”. The iterative process ends when the applica-
tion requirements are verified to a desired level of complete-
ness. For instance, the requirements conversion module may
produce the plurality of application system state transitions
by combining and/or converting the inputted requirements
into the application system state transitions format over a
series of iterations.

In addition, the requirements unit produces the application
system state transitions in accordance with valid states of the
application system’s state space, which encompasses all pos-
sible states of the application system (e.g., millions, billions,
or more possible states) for each of the traffic light, intersec-
tion controller and the central controller. As such, the result-
ing application requirements specify a valid subset of the
application system state space where the application system
may operate.

During the generation of the applications requirements, the
requirements conversion module sends current representa-
tions of the application requirements to the verification mod-
ule for feedback. The requirements conversion module
adjusts the generation of the application requirements based
onthe verification feedback. In response to such feedback, the
requirements conversion module may change individual
application state transitions, it may add new application state
transitions, or it may remove application state transitions
from the current application requirements. The requirements
conversion module may operate on all inputted requirements,
or it may operate on incrementally larger portions of the
inputted requirements.

The verification module receives the application system
state transitions from the requirements conversion module as
they are being generated to verify that they are consistent with
the valid application system states and other correctness cri-
teria (e.g., the application requirements should not create a
safety violation, etc.). The verification module uses one or
more verification tools to verity the application requirements,
where the verification tools include, but are not limited to,
theorem proofing tools, model checking tools, state space
exploration tools, state abstraction tools, state reduction tools,
and/or combinations of such tools). The verification tools
may operate on concrete application system states (where all
variables of the application system state have a determined
value), or they may operate on symbolic application system
states (where the variables of the application system state may
not have a determined value).

The selection of a verification tool, or tools, may be based
onone or more of, but are not limited to, a number of available
application system state transitions, the number of previous



US 9,063,673 B2

35

conversion/verification iterations, verification tools previ-
ously used, previous and/or current verification results, a
predetermination, a lookup, a command, and/or available
verification tools. Note that the verification module may uti-
lize one or more tools in sequence and/or in parallel prior to
generating the verification feedback. For example, the verifi-
cation module may determine to start with the theorem prov-
ing tool to verify correctness conditions for the application
system state transitions and then utilize the model checking
tool to determine the reachability of application system states
that have been established to be incorrect.

As a further example, the verification module may select
the tool to apply by consulting an expert system that has
captured verification knowledge in the form of rules that
guide the selection of the tool. As another example, the veri-
fication module may have a predetermined algorithm for
selecting the tool. As yet another example, the verification
module may select an applicable tool based on evolutionary
programming principles. As a still further example, the veri-
fication module may select a tool as determined by an artifi-
cial-intelligence-based planning system. Other means for
selecting the verification tools are also possible.

The verification module may select the verification tool(s)
by taking into account the inputted requirements, application
requirements generated so far, previous intermediate results
of developing the application requirements, progress on cre-
ating application requirements, the verification module feed-
back of previous applications of a tool, the verification tools
already used, the number of times verification tools have been
used, and/or available verification tools.

The verification feedback, which may be produced by the
analysis module based on the results of the verification mod-
ule, indicates to the requirements conversion module whether
the verification results compare favorably to one or more
verification thresholds such as completeness (no deadlock
states, i.e., in any application system state that is not a termi-
nal state, another application system state transition may be
performed), consistency (no non-deterministic states, i.e., in
any application system state, at most one application system
state transition may be performed), and/or safety (i.e., a cer-
tain condition holds at every application system state or does
not hold at every application system state, e.g., resources are
always released before they are acquired, timers always
expire before they are set) as determined by the parameters
24). Note that the verification module may determine to uti-
lize a different verification tool if the current verification tool
is not producing verification results within a desired time-
frame.

When the verification results do not compare favorably to
a verification threshold, the analysis module generates an
error indication and provides it to the requirements conver-
sion module. Once the error is reported, the verification mod-
ule may restart the verification process where it left off prior
to when it discovered the error.

FIG. 52 is a diagram that illustrates a plurality of applica-
tion system state transitions (ASSTs) 1-11 for an intersection
controller of the example traffic light control system. Each
ASST 1-11 indicates a pre-condition, an action, and a post-
condition. For example, ASST 1 indicates that the intersec-
tion controller sends a yellow message to the east west light
module (i.e., action) when the timer 1 expires (i.e., pre-con-
dition) such that the E-W lights are yellow (i.e., post-condi-
tion). As another example, ASST 2 indicates that the inter-
section controller starts timer 2 when the timer 1 expires
resulting in the action of timer 2 running.

Other examples include: ASST 3 indicates that the inter-
section controller, when in state 2, sends a red message to the

10

15

20

25

30

35

40

45

50

55

60

65

36

east west light module when the timer 2 expires resulting in
the E-W lights being red; ASST 4 indicates that the intersec-
tion controller sends, when in state 2, a green message to the
north south light module when the timer 2 expires resulting in
the E-W lights being green; ASST 5 indicates that when the
intersection controller is in state 2, it starts timer 3 when the
timer 2 expires resulting in timing 3 running; ASST 6 indi-
cates that the intersection controller sends a yellow message
to the north south light module when the timer 3 expires
resulting in the N-S lights being yellow; ASST 7 indicates that
the intersection controller starts timer 2 when the timer 3
expires resulting in timer 2; ASST 8 indicates that the inter-
section controller is in state 3, it sends a red message to the
north south light module when the timer 2 expires resulting in
N-S lights being red; ASST 9 indicates that the intersection
controller is in state 4, it sends a green message to the east
west light module when the timer 2 expires resulting in the
E-W lights being green; ASST 10 indicates that the intersec-
tion controller is in state 4, it starts timer 1 when the timer 2
expires resulting in time 1 running; and ASST 11 indicates
that the light module turns off the old light and turns on the
new light when receiving a new light on message resulting in
the new light being on and the old light being off.

FIG. 53 is a diagram of an example state table for a traffic
light in the traffic light control system example. As shown, a
traffic light may be in one of five states: red, yellow, green,
flashing red, or flashing yellow. With four traffic lights per
intersection, there are 625 possible states (e.g., 5* states).
While there are 625 possible states at an intersection, there are
only seven valid states in this example: RRRR, RRYY,
RRGG, YYRR, GGRR, arr, rryy, and yyrr, where the R rep-
resents that a light is red, Y represents that a light is yellow, G
represents that a light is green, r represents that a light is
flashing red, and y represents that a light is flashing yellow,
and where the first letter corresponds to the first N-S light, the
second letter corresponds to the second N-S light, the third
letter corresponds to the first E-W light, and the fourth letter
corresponds to the second E-W light.

FIG. 54 is state space diagram of a traffic light control
system example for an intersection that includes four traffic
light modules. As previously discussed, there are 7 valid
states for four traffic lights at an intersection from the possible
625 intersection states. The ovals include the color (e.g., red,
yellow, green) and mode (e.g., steady on or flashing) of the
light displayed for the state for the northbound, southbound,
eastbound, and westbound traffic. For example, RRGG
denotes the valid state of red for northbound, red for south-
bound, green for eastbound, and green for westbound. In
another example, yyrr denotes the valid state of flashing yel-
low for northbound, flashing yellow for southbound, flashing
red for eastbound, and flashing red for westbound. As another
example, state GGGG (e.g., green lights simultaneously in all
four directions) is an invalid intersection state.

When the intersection is in one state, the intersection con-
troller determines the next valid state and sends messages to
the traffic lights to transition to the next state. The intersection
controller makes the determination based on the current state
and an event (e.g., the time of day changes to a different time
period) or input (e.g., a timer expires). For example, for the
current state is RRGG, a next valid intersection state is RRY'Y,
which is represented by a line from the current state oval to the
next state oval.

The states and state transitions form the basis of an inter-
section controller state transition diagram (e.g., completely
formed with the addition of inputs and actions). The require-
ments unit may produce state transition diagrams for each



US 9,063,673 B2

37

system element (e.g., central controller, intersection control-
ler, light module) and send the state transition diagrams to the
implementation unit.

FIG. 55 is a diagram of the system 10 that includes the
requirements unit 12, the implementation unit 14, and the
testing unit 16. The implementation unit 14 includes one or
more transformation modules to generate application code
for each of'the traffic light, the intersection controller, and the
central controller from the corresponding application require-
ments 20.

As the implementation unit generates the application code
from the application requirements, parameters and testing
unit feedback, it selects one or more implementation tools.
These implementation tools are used by the implementation
unit to incrementally and/or iteratively create the implemen-
tation from the application requirements. This process may
require thousands, millions, or more tool applications in order
to produce the final implementation. The implementation unit
may select one or more new implementation tools for each
tool application or use the same implementation tools for
numerous tool applications.

At each iterative or incremental application of the imple-
mentation unit, the implementation unit takes the result of the
previous application (or the application requirements, if this
is the first application) and generates a new intermediate
result of the developing application code (or the application
code, if this is the last application). The intermediate results
may be in the form of, but are not limited to, message dia-
grams, state machine diagrams, state tables, state/event matri-
ces, pseudo code, structure diagrams, models or diagrams of
a modeling language such as, but not limited to UML, SDL,
VHDL, Verilog, BPML, SysML, etc., or suitable extensions
or profiles thereof, code in a programming language or a
suitable extension of such programming language, activity
diagrams, business process diagrams. For any of these, the
intermediate results may be in either textual or graphical
form.

In an example, the implementation unit selects the tool to
apply by consulting an expert system that has captured pro-
gramming knowledge in the form of rules that guide the
selection of the tool. In another example, the implementation
unit has a predetermined algorithm for selecting the tool. In
yet another example, the implementation unit selects an
applicable tool based on evolutionary programming prin-
ciples. In a further example, the implementation unit selects a
tool as determined by an artificial-intelligence-based plan-
ning system. Further, or in addition to, the implementation
unit selects the implementation tool(s) by taking into account
the application requirements, previous intermediate results of
the developing application code, progress on creating appli-
cation code, the testing unit feedback on previous intermedi-
ate results, the implementation tools already used, the number
of iterations for which implementation tools have been used,
and/or available implementation tools.

The implementation tools include specific-purpose devel-
opment tools and/or general-purpose development tools in
the form of artificial intelligence (Al) based planning system
implementation tools, predetermined algorithm tools, con-
sultation system tools, and/or evolutionary programming
principles tools. The specific-purpose development tools
include tools to implement application code for a particular
target processor and other constraint parameters. The gen-
eral-purpose development tools include tools to implement
application code based on common computing principles that
are not specific to a given target processor or other constraint
parameters. Specific-purpose and general-purpose develop-
ment tools may include, but are not limited to, one or more of

10

40

45

38

the following: compilers, program rewriting systems, term
rewriting systems, tree rewriting systems, graph transforma-
tion systems, model transformation systems, macro expan-
sion systems, aspect-oriented development systems, source-
to-source translators, data-type refinement systems, program
slicing systems, program pre-processors, program compre-
hension systems, program morphing systems, algebraic
manipulation systems, optimizations systems, or other sys-
tems that are able to make incremental changes to an existing
model or program. The individual implementation tools
range in size from simple transformation rules that make very
small, localized, incremental changes to the syntactic form of
the intermediate result (e.g., changing an increment operation
into an “add 17 operation) to aspect-oriented systems that can
make very large changes across the whole of the intermediate
result.

The process of developing the application code may go
through several incremental steps. For example, for the illus-
trative software development process described in FIG. 55,
the incremental steps may include an architecture level design
increment, a high-level design (HLD) increment, a low-level
design (LLD) increment, and a code development increment
(which is further described with reference to FIG. 61). The
iterative process may be organized in arbitrary and conve-
nient incremental steps and is not limited to the steps men-
tioned as examples. Note that the application code takes into
account architectural limitations and/or target implementa-
tion parameters (e.g., computing device and/or communica-
tions limitations).

The testing unit generates feedback indicating whether or
not the developing application is functioning in accordance
with the application requirements. If the developing applica-
tion is not functioning in accordance with the application
requirements, the development process must be reverted to a
previous step and corrected, up to and including revising the
original requirements.

FIG. 56 is a diagram of the system 10 that includes the
requirements unit 12, the implementation unit 14, and the
testing unit 16. The testing unit 16 includes a test case gen-
eration module, a test execution module, and a comparison
module. In general, the testing unit 16 tests the application
code for each of the traffic light, the intersection controller,
and the central controller as the implementation unit is gen-
erating it. The testing unit 16 may also test intermediate
results of the developing application code during the genera-
tion of the application code.

In an example of operation, the system converts, or enables
an operator of the system to convert, the application require-
ments into application system test cases, which are typically
in a format indicating stimuli input into the application sys-
tem and the corresponding responses emitted from the appli-
cation system, if any. The test cases may be in a standardized
format, such as TTCN, MSC, or in any other format suitable
to express application system test cases. The test creation
module may take into account parameters indicated desired
application system behavioral scenarios or prohibited appli-
cation system behavioral scenarios.

The test execution module accepts the application system
test cases and converts them to the appropriate level of
abstraction for the artifact to be tested. For example, when the
implementation unit has generated a representation of the
application system as high-level design model, the test execu-
tion module converts the test cases into tests suitable to exer-
cise a high-level design model. When the application unit has
generated application code, the test execution module con-
verts the test cases into tests suitable to exercise the applica-
tion code. The test execution module then stimulates the



US 9,063,673 B2

39

application system generated by the implementation unit with
the test cases and collects the application system response.

The compare module accepts the test cases from the test
creation module and the application system response from the
test execution module and compares the observed behavior of
the application system with the prescribed behavior described
in the test cases. The compare module then generates a
description of the observed application system behavior and
its deviation from the prescribed behavior, if any. The devia-
tion from the prescribed behavior may be result of transition-
ing to an invalid state (e.g., GGGG for the lights of an inter-
section) or may a violation of a correctness requirement (e.g.,
violation of applicable traffic laws, violation of a safety con-
cern, violation of traffic light transition timing requirements,
etc.). The compare module provides the feedback to the
implementation unit, which uses the feedback to further
transform the application system (e.g., generate the applica-
tion code).

In a further example of operation, the implementation unit
14 generates application code based on the application
requirements 20, parameters, and feedback from the testing
unit 16 using one or more implementation tools. For instance,
the application code may comprise a series of sequential or
concurrent statements and declarations 1-n that implement
the application system behavior. As the implementation unit
generates the application code from the application require-
ments, parameters and testing unit feedback, it selects one or
more implementation tools. As discussed above, the imple-
mentation unit may select one or more new implementation
tools for each loop of generating the application code or use
the same implementation tools for numerous loops.

FIG. 57 is a graphical illustration representing the genera-
tion of the application code by the system 10. As shown,
application requirements 20, in the form of application sys-
tem state transitions (ASST), and parameters 24 are used to
generate intermediate results, which are iteratively tested to
produce the final application code 26. For example, one or
more ASSTs and parameters may provide input to iteratively
or incrementally generate an intermediate result. For each
iterative or incremental application of one or more implemen-
tation tools to generate an intermediate result (e.g., one or
more of'the intermediate result types illustrated in this figure),
the application of the tool(s) is tested as previously described
to produce feedback for the requirements unit and/or the
implementation unit. The feedback indicates whether the
development of the intermediate result is error-free or
includes errors. If the feedback indicates an error, the imple-
mentation unit modifies its implementation of the immediate
result to circumvent the error. Depending on the nature of the
error, the requirements unit may modify the application
requirements 20.

As the implementation unit iteratively or incrementally
generates the intermediate results towards the final applica-
tion code 26, the various intermediate results are iteratively
and/or incrementally tested. For instance, as the implemen-
tation unit is generating intermediate results of state tables,
pseudo code, activity diagrams, state machine diagrams,
state/event matrices, structure diagrams, business process
diagrams, models, modeling language diagrams, and/or code
in a particular programming language, the incremental or
iterative development of such intermediate results is tested as
previously described.

FIG. 58 is a diagram representing the architecture level
design phase for the specific embodiment of developing
application code following the illustrative software develop-
ment process depicted in FIG. 33, producing one or more
composite structure diagrams (CSD). In this example, the

10

15

20

25

30

35

40

45

50

55

60

65

40

implementation unit 14 generates, in an iterative or incremen-
tal manner, composite structure diagram(s) (CSD) based on
the application requirements 20 (in the form of ASSTs), some
or all of the inputted requirements 18 (e.g., nonfunctional
requirements and component use cases), and feedback from
the testing unit 16 using one or more implementation tools.
The intermediate result of the developing application code
(i.e., the CSDs) includes a structure that is comprised of one
or more parts of a class (e.g., a group of parts sharing a state
and exhibiting interactive behavior), ports for communica-
tion (e.g., to interact with parts and other elements outside of
the CSD), and connectors between the ports (e.g., binding two
or more entities together). The composite structure includes
the interconnected set of elements (e.g., parts) that operate
and interact to achieve the application requirements.

To iteratively or incrementally generate a current represen-
tation of the application code (i.e., the CSDs during the archi-
tecture level design phase), the implementation unit selects
one or more implementation tools (e.g., specific-purpose
development tools and/or general-purpose development tools
applicable at the architecture level design phase) based on the
current intermediate result of the developing application code
(e.g., the CSD diagrams), the application requirements,
inputted requirements, and/or the testing unit feedback. Such
atool selection may be done for each iterative or incremental
step of generating the application code or for groups of steps
(i.e., the same implementation tool is used for numerous
steps).

As the implementation unit iteratively or incrementally
generates the intermediate result of the developing applica-
tion code (e.g., the CSD diagrams), the testing unit tests it. As
previously discussed, the testing unit generates test cases,
tests the developing application code, compares the tested
results with anticipated results, and generates feedback based
onthe comparison. In this example, the testing unit creates the
test cases and performs the testing in accordance with the
intermediate result of the developing application code at the
architecture level design phase (e.g., the CSD diagrams).

FIG. 59 is a diagram representing the high-level design
phase for the specific embodiment of developing application
code following the illustrative software development process
depicted in FIG. 33, producing state machine diagrams. In
this example, the implementation unit 14 generates, in an
iterative or incremental manner, state machine diagram(s)
(SM) based on the application requirements 20 (in the form of
ASSTs), some or all of the inputted requirements 18 (e.g.,
nonfunctional requirements and component use cases), and
feedback from the testing unit 16 using one or more imple-
mentation tools.

To iteratively or incrementally generates the intermediate
result of the developing application code at the high-level
design phase (i.e., state diagrams), the implementation unit
selects one or more implementation tools (e.g., specific-pur-
pose development tools and/or general-purpose development
tools applicable at the high-level design phase) based on the
application requirements, previous iteration(s) of the devel-
oping application code, progress on creating application
code, the testing unit feedback of previous loop(s), the imple-
mentation tools already used, the number of iterations for
which implementation tools have been used, and/or available
implementation tools. Such a tool selection may be done for
each iterative or incremental step of generating the applica-
tion code or for groups of steps (i.e., the same implementation
tool is used for numerous steps).

As the implementation unit iteratively or incrementally
generates the intermediate result of the developing applica-
tion code at the high-level design phase (e.g., the state dia-



US 9,063,673 B2

41

grams), the testing unit tests it. As previously discussed, the
testing unit generates test cases, tests the developing applica-
tion code, compares the tested results with anticipated results,
and generates feedback based on the comparison. In this
example, the testing unit creates the test cases and performs
the testing in accordance with the intermediate result of the
developing application code at the high-level design phase
(e.g., the state machine diagrams). This intermediate result
includes one or more of components, interfaces, and/or data
flow between the components.

FIG. 60 is a diagram representing the low-level design
phase for the specific embodiment of developing application
code following the illustrative software development process
depicted in FIG. 55, producing the detailed CSD plus state
machine (SM) diagrams, platform aspects, and/or protocol
specifications. In this example, the implementation unit 14
generates, in an iterative or incremental manner, the interme-
diate result of the developing application code at the low-level
design phase based on the application requirements 20, input
requirements (e.g., behavior definition), previous intermedi-
ate results, and/or feedback from the testing unit 16 using one
or more implementation tools.

To iteratively or incrementally generates the intermediate
result of the developing application code at the low-level
design phase (i.e., detailed CSD plus SM diagrams, platform
aspects, and/or protocol specifications), the implementation
unit selects one or more implementation tools (e.g., specific-
purpose development tools and/or general-purpose develop-
ment tools applicable at the low-level design phase) based on
the application requirements, previous iteration(s) of the
developing application code, progress on creating application
code, the testing unit feedback of previous loop(s), the imple-
mentation tools already used, the number of iterations for
which implementation tools have been used, and/or available
implementation tools. Such a tool selection may be done for
each iterative or incremental step of generating the applica-
tion code or for groups of steps (i.e., the same implementation
tool is used for numerous steps).

As the implementation unit iteratively or incrementally
generates the intermediate result of the developing applica-
tion code at the low-level design phase (i.e., detailed CSD
plus SM diagrams, platform aspects, and/or protocol specifi-
cations), the testing unit tests it. As previously discussed, the
testing unit generates test cases, tests the developing applica-
tion code, compares the tested results with anticipated results,
and generates feedback based on the comparison. In this
example, the testing unit creates the test cases and performs
the testing in accordance with the intermediate result of the
developing application code at the low-level design phase
(i.e., detailed CSD plus SM diagrams, data structure defini-
tions, platform aspects, protocol specifications, and/or proto-
col tests). The intermediate results include one or more of
sub-components, interfaces, functional logic, tables, inter-
face details, dependencies, and/or input/output data flow
between the sub-components and between the sub-compo-
nents and external components. The intermediate results may
also specify the operation of logical functions alone or as part
of data structure definitions. For example, the compare logi-
cal function outputs a signal externally that the timer has
expired and the compare logical function sends a data flow to
the reset logical function to reset the counter when the com-
pare logical function determines that a comparison of the
counter and the register indicates that a counter value is the
same as a register value (e.g., the timer has expired).

FIG. 61 is a diagram representing the code development
phase for the specific embodiment of developing application
code following the illustrative code development process

10

15

20

25

30

35

40

45

50

55

60

65

42

phase depicted in FIG. 55, producing the application code. In
this example, the implementation unit 14 generates, in an
iterative or incremental manner, application code based on
the application requirements 20, input requirements (e.g.,
behavior definition and platform documentation), previous
intermediate results, and/or feedback from the testing unit 16
using one or more code level implementation tools. For
instance, the application code includes a series of sequential
or concurrent statements and declarations 1-n that implement
the application system behavior. The application code
includes one or more of sub-components, interfaces, func-
tional logic, tables, interface details, dependencies, and/or
input/output data flow between the sub-components and
between the sub-components and external components. The
generated artifacts may also include user code and integration
tests.

To iteratively or incrementally generate the application
code, the implementation unit 14 selects one or more imple-
mentation tools (e.g., specific-purpose development tools
and/or general-purpose development tools applicable at the
code development phase) based on the application require-
ments 20, parameters, previous iteration(s) of the developing
application code, progress on creating application code, the
testing unit 16 feedback of previous loop(s), the implemen-
tation tools already used, the number of iterations for which
implementation tools have been used, and/or available imple-
mentation tools. Such a tool selection may be done for each
iterative or incremental step of generating the application
code or for groups of steps (i.e., the same implementation tool
is used for numerous steps).

As the implementation unit iteratively or incrementally
generates the application code, the testing unit tests it. As
previously discussed, the testing unit generates test cases,
tests the application code, compares the tested results with
anticipated results, and generates feedback based on the com-
parison. In this example, the testing unit creates the test cases
and performs the testing in accordance with the application
code.

While the example of FIGS. 40-61 focused on a simple
traffic light system, the teachings of the present invention are
applicable to generating application code for a wide variety of
devices, applications, and/or application systems. For
example, the teachings of the present invention may be used
to generate application code for a cellular telephone, a per-
sonal digital audio/video player, etc. In general, the teachings
of the present invention may be used to generate software for
an almost endless list of devices and/or applications.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., an item includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As



US 9,063,673 B2

43

may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “module”, “processing circuit”, and/or “processing
unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a micro-
processor, micro-controller, digital signal processor, micro-
computer, central processing unit, field programmable gate
array, programmable logic device, state machine, logic cir-
cuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational instructions. The
processing module, module, processing circuit, and/or pro-
cessing unit may have an associated memory and/or an inte-
grated memory element, which may be a single memory
device, a plurality of memory devices, and/or embedded cir-
cuitry of the processing module, module, processing circuit,
and/or processing unit. Such a memory device may be a
read-only memory, random access memory, volatile memory,
non-volatile memory, static memory, dynamic memory, flash
memory, cache memory, and/or any device that stores digital
information. Note that if the processing module, module,
processing circuit, and/or processing unit includes more than
one processing device, the processing devices may be cen-
trally located (e.g., directly coupled together via a wired
and/or wireless bus structure) or may be distributedly located
(e.g., cloud computing via indirect coupling via a local area
network and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience

40

45

65

44

of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. Forinstance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
functional block that is implemented via hardware to perform
one or module functions such as the processing of one or more
input signals to produce one or more output signals. The
hardware that implements the module may itself operate in
conjunction software, and/or firmware. As used herein, a
module may contain one or more sub-modules that them-
selves are modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:
1. A method for execution by a processing module, the
method comprises:

receiving application requirements and parameters from a
requirements unit;

receiving feedback from a testing unit regarding testing of
application code as the application code is being gener-
ated; and



US 9,063,673 B2

45

generating, in a plurality of phases, the application code
based on the application requirements, the parameters,
and the feedback, wherein, for a current iteration of a
plurality of iterations of a phase of the plurality of
phases, entering a loop, wherein the loop includes:
selecting an implementation tool from a plurality of

implementation tools in accordance with implemen-
tation constraints and a previous implementation
result;
generating a current implementation result based on an
application of the implementation tool, one or more of
the application requirements, one or more of the
parameters, and the previous implementation result;
receiving current feedback ofthe feedback regarding the
current implementation result;
determining whether the current implementation result
meets the one or more of the application requirements
and passes a current iteration of testing as indicated by
the current feedback;
when the current implementation result does not meet
the one or more of the application requirements or
does not pass the current iteration of the testing:
adjusting one or more of selecting the implementation
tool and the one or more of the application require-
ments to produce an adjusted implementation set;
and
repeating the loop using the adjusted implementation
set and based on the current feedback; and
when the current implementation result meets the one or
more of the application requirements and passes a
current iteration of testing, exiting the loop.

2. The method of claim 1 further comprises:

the parameters including one or more of an application
system behavioral constraint, an application system cor-
rectness condition, an application system platform, a
behavior definition, and a data definition; and

the application requirements including a plurality of appli-
cation system state transitions.

3. The method of claim 1, wherein each of the previous and

current implementation results comprises at least one of:

a message diagram, a state machine diagram, a state table,
a state/event matrix, pseudo code, a structure diagram, a
model, a diagram of a modeling language, code in a
programming language, an activity diagram, and busi-
ness process diagram.

4. The method of claim 1, wherein the implementation tool

comprises at least one of:

a specific use implementation tool for implementing the
current implementation of the incremental phase of gen-
erating the application code for a particular target pro-
cessor and other constraint parameters; and

a general use implementation tool for implementing the
current implementation of the incremental phase of gen-
erating the application code in accordance with non-
targeted processor common computing principles.

5. The method of claim 1, wherein the implementation tool

comprises at least one of:

an artificial intelligence (Al) based planning system imple-
mentation tool;

a predetermined algorithm tool;

a consultation system tool; and

an evolutionary programming principles tool.

6. The method of claim 1, wherein the implementation tool

comprises at least one of:

acompiler, a program rewriting system tool, a term rewrit-
ing system tool, a tree rewriting system tool, a graph
transformation system tool, a model transformation sys-

10

15

20

40

45

60

46

tem tool, a macro expansion system tool, an aspect-
oriented development system tool, a source-to-source
translator, a data-type refinement system tool, a program
slicing system tool, a program pre-processor, a program
comprehension system tool, a program morphing sys-
tem tool, an algebraic manipulation system tool, and an
optimizations system tool.

7. The method of claim 1, wherein the selecting an imple-
mentation tool further comprises:

selecting the implementation for at least one repeating of

the loop;

selecting the implementation tool based on one or more of:

the application requirements, the previous implementa-
tion result, the current feedback, previously used imple-
mentation tools, previous feedback regarding the current
implementation of the incremental phase of generating
the application code, a number of iterations for which
the implementation tool has been used, an available
implementation tools of the plurality of implementation
tools;

selecting the implementation tool by consulting an expert

system that has captured programming knowledge;
selecting the implementation tool by executing a predeter-
mined implementation tool selection algorithm;
selecting the implementation tool by based on evolutionary
programming principles; and

selecting the implementation tool by an artificial-intelli-

gence-based planning system.

8. The method of claim 1, wherein the generating applica-
tion code further comprises:

the plurality of process phases including:

an architecture level design process phase;

a high-level design (HLD) process phase;

a low-level design (LLD) process phase; and

a code development process phase.

9. The method of claim 1, wherein the adjusting one or
more of selecting the implementation tool and the one or more
of'the application requirements to produce an adjusted imple-
mentation set comprises at least one of:

reverting to a previously selected implementation tool;

selecting a different implementation tool from the plurality

of implementation tools; and

revising the one or more of the application requirements.

10. An implementation unit comprises:

an input/output module operably coupled to a memory

receive application requirements from a requirements
unit;
receive parameters; and
receive feedback from a testing unit regarding testing of
application code as the application code is being gen-
erated; and
a processing module operably coupled to:
generate, in a plurality of phases, the application code
based on the application requirements, the param-
eters, and the feedback, wherein, for a current itera-
tion of a plurality of iterations of a phase of the plu-
rality of phases, entering a loop, wherein the loop
includes:
select an implementation tool from a plurality of
implementation tools in accordance with imple-
mentation constraints and a previous implementa-
tion result;
generate a current implementation result based on an
application of the implementation tool, one or more
of the application requirements, one or more of the
parameters, and the previous implementation
result;



US 9,063,673 B2

47

receive current feedback of the feedback regarding
the current implementation result;
determine whether the current implementation result
meets the one or more of the application requirements
and passes a current iteration of testing as indicated by
the current feedback;
when the current implementation result does not meet
the one or more of the application requirements or
does not pass the current iteration of the testing:
adjust one or more of selecting the implementation
tool and the one or more of the application require-
ments to produce an adjusted implementation set;
and
repeat the loop using the adjusted implementation set
and based on the current feedback; and
when the current implementation result meets the one
or more of the application requirements and passes
the current iteration of testing, exit the loop.

11. The implementation unit of claim 10 further comprises:

the parameters including one or more of an application

system behavioral constraint, an application system cor-
rectness condition, an application system platform, a
behavior definition, and a data definition;

the application requirements including a plurality of appli-

cation system state transitions; and each of the previous
and current implementation results including at least one
of: a message diagram, a state machine diagram, a state
table, a state/event matrix, pseudo code, a structure dia-
gram, a model, a diagram of a modeling language, code
in a programming language, an activity diagram, and
business process diagram.

12. The implementation unit of claim 10, wherein the
implementation tool comprises at least one of: a specific use
implementation tool for implementing the current implemen-
tation of the incremental phase of generating the application
code for a particular target processor and other constraint
parameters; and

a general use implementation tool for implementing the

current implementation of the incremental phase of gen-
erating the application code in accordance with non-
targeted processor common computing principles.

13. The implementation unit of claim 10, wherein the
implementation tool comprises at least one of:

an artificial intelligence (Al) based planning system imple-

mentation tool;

a predetermined algorithm tool;

a consultation system tool; and

an evolutionary programming principles tool.

14. The implementation unit of claim 10, wherein the
implementation tool comprises at least one of:

10

20

25

30

40

45

48

a compiler, a program rewriting system tool, a term rewrit-
ing system tool, a tree rewriting system tool, a graph
transformation system tool, a model transformation sys-
tem tool, a macro expansion system tool, an aspect-
oriented development system tool, a source-to-source
translator, a data-type refinement system tool, a program
slicing system tool, a program pre-processor, a program
comprehension system tool, a program morphing sys-
tem tool, an algebraic manipulation system tool, and an
optimizations system tool.

15. The implementation unit of claim 10, wherein the pro-

cessing module selects the implementation tool further by:
selecting the implementation for at least one repeating of
the loop;

selecting the implementation tool based on one or more of:
the application requirements, the previous implementa-
tion result, the current feedback, previously used imple-
mentation tools, previous feedback regarding the current
implementation of the incremental phase of generating
the application code, a number of iterations for which
the implementation tool has been used, an available
implementation tools of the plurality of implementation
tools;

selecting the implementation tool by consulting an expert
system that has captured programming knowledge;

selecting the implementation tool by executing a predeter-
mined implementation tool selection algorithm;

selecting the implementation tool by based on evolutionary
programming principles; and

selecting the implementation tool by an artificial-intelli-
gence-based planning system.

16. The implementation unit of claim 10, wherein the pro-

cessing module generates the application code further by:
the plurality of process phases including:

an architecture level design process phase;

a high-level design (HLD) process phase;

a low-level design (LLD) process phase; and

a code development process phase.

17. The implementation unit of claim 10, wherein the pro-
cessing module adjusts one or more of selecting the imple-
mentation tool and the one or more of the application require-
ments to produce an adjusted implementation set comprises
at least one of:

reverting to a previously selected implementation tool;

selecting a different implementation tool from the plurality
of implementation tools; and

revising the one or more of the application requirements.

#* #* #* #* #*



